cho tam giác abc vuông tại a có AB =BC/2.Chứng tỏ góc c = 30 độ .
Cho tam giác ABC vuông tại A góc B = 60 độ kể BD là p/g của góc ABC tính góc C , góc ADB
Chứng tỏ tam giác BCD là tam giác cân
Kẻ BE vuông góc với BC, DE cắt AB tại F chứng tỏ góc BFE = góc C
-TÍNH GÓC C:
Xét ΔABC có ˆA+ˆB+ˆC=180°
Do đó: góc C = 180°−ˆA−ˆB = 180-60-90 = 30độ (1)
-TÍNH GÓC ADB:
có: BD là tia phân giác góc ABC
Nên: góc ABD= góc CBD=1/2 góc ABC=1/2 . 60độ =30 độ (2)
⇒góc ABD = 60độ
Xét ΔABD có: gócA+ˆB+ˆD=180độ
Do đó:góc BDA=180 - A- ABD=180°−30°−90°=60°.
-CM ΔBDC cân:
Từ (2) ta có: góc DBC =30độ
Từ (1) ta có:góc ACB=30 độ
Từ (1) và (2) ta có :⇒ΔBCD cân tại D(ĐPCM)
a ) cho tam giác ABC vuông tại A , góc B = 30 độ
CMR : AC = 1/2 BC
b ) cho tam giác ABC vuông tại A có AB = 1/2 BC
CMR : góc C = 30 độ
Kẻ trung tuyến AM, AM = 1/2 BC = MB = MC
a) Nêu góc B = 30 độ thì góc C bằng 60 độ
Tam giác MAC cân tại M có góc C bằng 60 độ nên nó là tam giác đều => AC = MC = 1/2 BC
b) Nếu AC = 1/2 BC => Tam giác MAC đều vì AC = 1/2 BC = MC = MA
=> Góc C bằng 60 độ
Trong tam giác ABC có góc A = 90 độ, góc C = 60 độ => góc B = 30 độ
sao lại làm thế này
1) cho tam giác ABC có góc B =65 độ và có góc C=40độ. vẽ AH vuông góc với BC tại H . vẽ phân giÁC CỦA GÓC AHC cắt AC tại D . vẽ DE vuông góc với HC tại E
a)Tính góc BAH
b) Chứng minh AH vuông góc với DE
c)tính góc ngoài của tại đỉnh D của tam giác HDA
2) Cho tam giác ABC vuông tại A có góc B =60 độ . lây sM thuộc cạnh AB và N thuộc cạnh AC sao cho MN song song với BC
a) tính góc ANM
b) trên cạnh BC lấy D : BDM = 30 độ chứng tỏ DM song song với CN
Cho tam giác ABC vuông tại B có góc C=30 độ. Tia phân giác của góc A cắt BC tại D. Kẻ DI vuông góc với AC(I thuộc AC).
a, CMR: AB=AI
b, Gọi M là giao điểm của ID và AB. CMR: DM=DC
c, CM tam giác MAC đều
d, Chứng tỏ MD=2DI
Mình cx đg cần câu trả lời của bài này.
a, Xét tam giác ABD và tam giác AID có:
góc ABD = góc AID ( = 90 độ )
AD cạnh chung
góc BAD = góc IAD (gt )
Do đó tam giác ABD = tam giác AID ( CH - GN )
=> AB = AI ( 2 cạnh tương ứng )
b, Vì tam giác ABD = tam giác AID ( theo câu a )
=> BD = ID (2 cạnh tương ứng )
Xét tam giác BDM và tam giác IDC có:
góc MBD = góc CID ( = 90 độ )
BD = ID ( cmt )
góc BDM = góc IDC ( đđ )
Do đó tam giác BDM = tam giác IDC ( g.c.g )
=> DM = DC ( 2 cạnh tương ứng )
c, Vì tam giác BDM = tam giác IDC ( theo câu b )
=> BM = DC ( 2 cạnh tương ứng )
Ta có: AB + BM = AM
AI + IC = AC
=> AM = AC
Mà góc A = 60 độ => tam giác AMC đều
d, Vì tam giác DIC là nửa tam giác đều
=> 2DI = DC
Mà DC = DM => 2DI = DM ( đpcm )
cho tam giác abc vuông tại a có ab=6cm ac=8cm. tính bc. kẻ tia phân giác góc b cắt ac tại d , kẻ dc vương góc bc. chứng minh abd=ebd . với góc c=30 độ chứng minh tam giác abe là tam giác dều
a: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
c: Xét ΔABE có BA=BE
nên ΔBAE cân tại B
mà \(\widehat{ABE}=60^0\)
nên ΔBAE đều
Cho tam giac ABC vuông tại C có góc B=40 độ. Tia phân giác AD. Lấy E thuộc AB sao cho AE=AC.
a) So sánh các cạnh của tam giác ABC.
b) Chứng tỏ tam giác AED vuông.
c) Đường vuông góc với AC tại A cắt đường thẳng DE tại H. Chứng minh tam giác ADH cân.
d) Kẻ CK vuông góc AB tại K. Lấy I thuộc AB sao cho BI=BC. Chứng minh: CI là phân giác ACK.
cho tam giác abc vuông tại a có c=30 độ tia phân giác của góc b cắt ac tại d
a)chứng minh rằng tam giác bdc là tam giác cân
b)qua d kẻ đường thẳng vuông góc với bc tại e cắt ab tại f chứng minh bf=bc
c)cho ab=4cm.tính chiều dài các cạnh của tam giác abc
Cho tam giác ABC vuông góc tại A có góc C=30 độ. Trên cạnh BC lấy D sao cho BD=AB. Chứng minh rằng:a) Tam giác ABC là tam giác đều.b) D là trung điểm của BC
1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm
a) Chứng tỏ tam giác ABC vuông tại A.
b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.
2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.
a) Chứng tỏ tam giác ABC vuông.
b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.
3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.
4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC
a) Chứng minh tam giác AHB = tam giác AHC
b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.
5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I
a) Chứng minh tam giác AIB = tam giác AIC
b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.
c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.
6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.
a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.
b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.
c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.
Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a) Áp dụng định lý Pytago vào \(\Delta\)ABC có
AB2+AC2=BC2
thay AB=3cm, AC=4cm va BC=5cm, ta có:
32+42=52
=> 9+16=25 (luôn đúng)
=> đpcm
b) có D nằm trên tia đối của tia AC
=> D,A,C thằng hàng và A nằm giữa D và C
=> DA+AC=DC
=> DA+4=6
=>DA=2(cm)
áp dụng định lý Pytago vào tam giác ABD vuông tại A có:
AB2+AD2=BD2
=> 32+22=BD2
=> 9+4=BD2
=> \(BD=\sqrt{13}\)(cm)
Bài 1 : Cho tam giác ABC có AB =6cm , AC = 8cm , BC = 10cm
a) Chứng tỏ tam giác ABC vuông
b) Gọi M là trung điểm BC . Kẻ MK vuông AC trên tia đối tia MH lấy K sao cho MK = MH chứng minh BK // AC
c) BH cắt AG tại G là trọng tâm tam giác ABC
Bài 2 : Cho tam giác ABC ở phía ngoài tam giác đó vẽ các tam giác vuông cân tại A là ACD và ACE
a) Chứng minh CD = BE và CD vuông góc với BE
b) Kẻ đường thẳng đi qua A vuông với BC tại H . Chứng minh AH đi qua đường thẳng DE . Lấy điểm K nằm trong tam giác ABD sao cho góc ABH = 30 độ , AB = BK . Chứng minh chúng bằng nhau
Bài 3 : Cho tam giác ABC vuông ở C có góc A = 60 độ . Tia p/g của góc BAC cắt BC ở E , kẻ EK vuông góc với AB ( K thuộc AB ) . Kẻ BD vuông góc với AE ( D thuộc AE)
b) Chứng minh tam giác ACE = tam giác AKE và AE vuôngg góc với CK
c) chứng minh EB > AC , 3 đường thẳng AC , BD ,, KE cùng đi qua 1 điểm
a) xét \(\Delta ABC\)CÓ
\(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=36+64=100\)
VÌ \(100=100\)
\(\Rightarrow BC^2=AB^2+AC^2\)
VẬY \(\Delta ABC\) VUÔNG TẠI A
trong tam giác ABC ta có :
AB2=62=36
AC2=82=64
BC2=102=100
ta thấy : 100=36+64 => BC2=AC2=AB2( định lý pytago đảo )
=> tam giác ABC vuông tại A
CHÚC BẠN HỌC TỐT !!!