Bài 1 . Cho biết a + 4b chia hết cho 13 ( a,b \(\in\)N ) . Chứng minh rằng 10a + b chia hết cho 13
Cho biết a + 4b chia hết cho 13 ( a, b thuộc N), chứng minh rằng 10a + b chia hết cho 13
Nếu (a + 4b) chia hết 13 thì 10.(a + 4b) cũng chia hết cho 13
Vì 39b chia hết cho 13
Nên 10.(a + 4b) - 39b cũng chia hết cho 13
Chứng tỏ 10a + b chia hết cho 13
(39b là mình lấy từ 10.(a + 4b) -10a + b đó bạn)
Nếu (a + 4b) chia hết 13 thì 10.(a + 4b) cũng chia hết cho 13
Vì 39b chia hết cho 13
Nên 10.(a + 4b) - 39b cũng chia hết cho 13
Chứng tỏ 10a + b chia hết cho 13
(39b là mình lấy từ 10.(a + 4b) -10a + b )
nếu đổi ngược lại thành 10a + b chia hết cho 13 thì a +4b chia hết cho 13 thì làm thế nào
Bài toán: Cho biết a + 4b chia hết cho 13
Chứng minh rằng: 10a + b chia hết cho 13
Ta có : a + 4b chia hết cho 13 => 3.(a + 4b )
=> 3a + 12b
Xét tổng :
( 3a + 12b ) + ( 10a +b )
= 3a +10a +12b +b
= 13a +13b ( chia hết cho 13 )
Mà 3a + 12b chia hết cho 13 => 10a + b chia hết cho 13
Biết a + 4b chia hết cho 13 (a,b \(\in\) N).Chứng minh rằng: 10a + b chia hết cho 13.
a + 4b chia hết 13 => 10 ( a + 4b ) cũng chia hết 13
mà 10( a + 4b ) = 10a + 40b = 10a + b + 39b
xét tổng trên thấy 39b chia hết 13 => 10a + b chia hết 13 ( đpcm )
a + 4b chia hết cho 13 => 3(a + 4b) chia hết cho 13
Ta có: 3(a + 4b) + (10a + b) = 3a + 12b + 10a + b = 13a + 13b = 13(a + b) chia hết cho 13
Mà 3(a + 4b) chia hết cho 13 nên 10a + b chia hết cho 13
bài 1: chứng minh rằng
nếu 10a + b chia hết cho 13 thì a + 4b chia hết cho 13. Với a,b là các số tự nhiên.
Do \(\left(10a+b\right)⋮13\Rightarrow10a+b=13k\left(k\in N\right)\)
\(\Rightarrow b=13k-10a\)
\(\Rightarrow a+4b=a+4.\left(13k-10a\right)\)
\(=a+52k-40a\)
\(=52k-39a\)
\(=13\left(4k-3a\right)⋮13\)
Vậy \(\left(10a+b\right)⋮13\Rightarrow\left(a+4b\right)⋮13\)
cho biết a+4b chia hết cho 13 (a,b thuộc N ).Chứng minh rằng :10a+b chia hết cho13
Cho 10a+b chia hết cho 13 (a,b thuộc N).Chứng minh rằng a+4b chia hết cho 13.
10a + b chia hết cho 13
10a + b + 39b chia hết cho 13
10a + 40b chia hết cho 13
10(a + 4b) chia hết cho 13
Vì UCLN(10 ; 13) = 1
Do đó a + 4b chia hết cho 13
a) Giải
Ta có:
a + 5b ⋮ 7 ⇒10(a + 5b) ⋮ 7 ⇒10a + 50b ⋮ 7
Vì 49 ⋮ 7 ⇒49b ⋮ 7
⇒10a + (50b - 49b) ⋮ 7
⇒10a + b ⋮ 7
Vậy 10a + b ⋮ 7
b) Giải
Ta có:
a + 4b ⋮ 13 ⇒10(a + 4b) ⋮ 13 ⇒10a + 40b ⋮ 13
VÌ 39 ⋮ 13 ⇒39b ⋮ 13
⇒10a + (40b - 39b) ⋮ 13
⇒10a + b ⋮ 13
Vậy 10a + b ⋮ 13
Cho biết a + 4b chia hết cho 13 với a,b thuộc Z. Chứng minh rằng 10a + b chia hết cho 13.
Ta có:
3 . (a + 4b) + (10a + b) = 3a + 12b + 10a + b = (3a + 10a) + (12b + b) = 13a + 13b = 13 . (a + b) chia hết cho 13.
Mà a + 4b chia hết cho 13 nên 3 . (a + 4b) chia hết cho 13 mà tổng 3 . (a + 4b) + (10a + b) cũng chia hết cho 13
suy ra 10a + b chia hết cho 13
Ta có:
a + 4b chia hết cho 13
=>10.(a + 4b) chia hết cho 13
=>10a+40b chia hết cho 13
Mà 39b chia hết cho 13
=> (10a+40b)-39b chia hết cho 13
=>10a+b chia hết cho 13
Vậy 10a+b chia hết cho 13
Ta có:
3 . (a + 4b) + (10a + b) = 3a + 12b + 10a + b = (3a + 10a) + (12b + b) = 13a + 13b = 13 . (a + b) chia hết cho 13.
Mà a + 4b chia hết cho 13 nên 3 . (a + 4b) chia hết cho 13 mà tổng 3 . (a + 4b) + (10a + b) cũng chia hết cho 13
suy ra 10a + b chia hết cho 13
Biết a+4b chia hết cho 13(a,b thuộc N). Chứng minh 10a+b chia hết cho 13
a + 4b chia hết 13 => 10 ( a + 4b ) cũng chia hết 13
mà 10( a + 4b ) = 10a + 40b = 10a + b + 39b
xét tổng trên thấy 39b chia hết 13 => 10a + b chia hết 13 ( đpcm )
a+4b chia hết cho 13 suy ra 10a+4b cũng chia hết cho 13
k mình nè
Giải : Đặt a + 4b = x ; 10a + b = y . Ta biết x \(⋮\)13 , cần chứng minh y \(⋮\)13
• Xét biểu thức :
3x + y = 3(a + 4b ) + ( 10a + b ) = 3a + 12b + 10a + b = 13a + 13b.
Như vậy 3x + y \(⋮\)13 .
Vì x \(⋮\)13 nên 3x \(⋮\)13 . Suy y \(⋮\)13 .