Những câu hỏi liên quan
SN
Xem chi tiết
NQ
9 tháng 11 2017 lúc 20:41

Đặt n^2 + 4n + 2013 = k^2 (k thuộc N sao)

<=>(n+2)^2+2009=k^2

<=>2009 = k^2-(n+2)^2 = (k-n-2).(k+n+2)

Đến đó bạn tự giải đi nha ( tìm ước của 2009 để tìm n sau đó thử lại rùi kết luận)

Bình luận (0)
DN
10 tháng 11 2017 lúc 21:27

n2 + 4n + 2013 là số chính phương .

Đặt n2 + 4n + 2013 = t2 ( t \(\in\)Z+ )

<=> t2 - ( n2 + 4n + 4 ) = 2009

<=> t2 - ( n + 2 )2 = 2009

<=> ( t - n - 2 ) ( t + n + 2 ) = 2009

Ta thấy : t + n + 2 > t - n - 2\(\forall\)t , n \(\in\)Z+

=> t + n = 2009 => t = 1005

t - n - 2 = 1 => n = 1002 ( thỏa mãn )

Vậy n = 1002 thì n2 + 4n + 2013 là số chính phương .

=> ( đpcm )

Bình luận (0)
KG
Xem chi tiết
NA
3 tháng 8 2023 lúc 9:35

`5.25.2.41.8`

`= 5.50.41.8`

`= 5.400.41`

`= 2000.41`

`= 82000`

Bình luận (0)
NT
3 tháng 8 2023 lúc 10:37

Đặt \(n^2+4n+2013=p^2\left(p\in Z\right)\)

\(\Rightarrow n^2+4n+4+2009=p^2\)

\(\Rightarrow\left(n+2\right)^2+2009=p^2\)

\(\Rightarrow p^2-\left(n+2\right)^2=2009\)

\(\Rightarrow\left(p+n+2\right)\left(p-n-2\right)=2009\)

mà \(p+n+2>p-n-2\left(n\in N\right)\) và 2009 là số nguyên tố

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}p+n+2=2009\\p-n-2=1\end{matrix}\right.\\\left\{{}\begin{matrix}p+n+2=-2009\\p-n-2=-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n=1002\\p=1005\end{matrix}\right.\)

Vậy \(n=1002\) thỏa đề bài

 

Bình luận (0)
KG
Xem chi tiết
NM
3 tháng 8 2023 lúc 10:30

\(n^2+4n+2013=\left(n^2+4n+4\right)+2009=k^2\)

\(\Leftrightarrow\left(n+2\right)^2+2009=k^2\)

\(\Rightarrow\left(k-n-2\right)\left(k+n+2\right)=2009\)

\(\Rightarrow k-n-2\) và \(k+n+2\) là ước của 2009

Ta có các TH

\(\left\{{}\begin{matrix}k-n-2=-1\\k+n+2=-2009\end{matrix}\right.\) 

Hoặc

\(\left\{{}\begin{matrix}k-n-2=-2009\\k+n+2=-1\end{matrix}\right.\)

Hoặc

\(\left\{{}\begin{matrix}k-n-2=1\\k+n+2=2009\end{matrix}\right.\)

Hoặc

\(\left\{{}\begin{matrix}k-n-2=2009\\k+n+2=1\end{matrix}\right.\)

Giải các hệ trên tìm n

 

Bình luận (0)
BA
Xem chi tiết
TN
11 tháng 11 2017 lúc 12:49

Đặt n^2+4n+2013 =a^2 ( a thuộc N*) => n^2+4n+4+2009=a^2 => (n+2)^2 +2009=a^2 => 2009= a^2-(n+2)^2 = (a-n-2)(a+n+2) mà a, n thuộc N, N* => a-n-2<a+n+2

(a-n-2)(a+n+2)=1.2009=7.287= 41.49

Bạn tự giải các trường hợp trên tìm được n=1002;138;2

Bình luận (0)
TN
12 tháng 11 2017 lúc 22:10

(+) a-n-2=1;a+n+2=2009

=> a+n+2-a+n+2=2009-1

=> 2n+4= 2008 => n= 1002 

Giải tương tự các trường hợp trên 

Bình luận (0)
BA
Xem chi tiết
AN
10 tháng 11 2017 lúc 14:23

\(n^2+4n+2013=a^2\)

\(\Leftrightarrow a^2-\left(n+2\right)^2=2009\)

\(\Leftrightarrow\left(a-n-2\right)\left(a+n+2\right)=41.7.7\)

Tới đây thì đơn giản rồi nhé

Bình luận (0)
DM
Xem chi tiết
TN
Xem chi tiết
ST
13 tháng 7 2018 lúc 21:51

1/ Câu hỏi của Lý Khánh Linh - Toán lớp 8 - Học toán với OnlineMath

2/

Đặt \(n^2+4n+2013=m^2\left(m\in N\right)\)

\(\Rightarrow\left(n^2+4n+4\right)+2009=m^2\)

\(\Rightarrow m^2-\left(n+2\right)^2=2009\)

\(\Rightarrow\left(m+n+2\right)\left(m-n-2\right)=2009\)

Vì \(m,n\in N\Rightarrow m+n+2;m-n-2\in N\Rightarrow m+n+2>m-n-2\)

\(\Rightarrow\hept{\begin{cases}m+n+2=2009\\m-n-2=1\end{cases}\Rightarrow\hept{\begin{cases}m+n=2007\\m-n=3\end{cases}}\Rightarrow\hept{\begin{cases}m=1005\\n=1002\end{cases}}}\)

Vậy n = 1002

Bình luận (0)
TN
13 tháng 7 2018 lúc 21:41

các bạn thay n2 ở câu 1 = n3 cho mk nhé

Bình luận (0)
H24
29 tháng 2 2020 lúc 9:31

Câu hỏi của Lý Khánh Linh - Toán lớp 8 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
14 tháng 6 2021 lúc 20:04

                                                                                                                                     # Aeri #

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
LF
9 tháng 11 2017 lúc 23:10

\(n^2+4n+2013\) là số chính phương

Đặt \(n^2+4n+2013=t^2\left(t\in Z^+\right)\)

\(\Leftrightarrow t^2-\left(n^2+4n+4\right)=2009\)

\(\Leftrightarrow t^2-\left(n+2\right)^2=2009\)

\(\Leftrightarrow\left(t-n-2\right)\left(t+n+2\right)=2009\)

Thấy: \(t+n+2>t-n-2\forall t,n\in Z^+\)

\(\Rightarrow\left\{{}\begin{matrix}t+n+2=2009\\t-n-2=1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}t=1005\\n=1002\end{matrix}\right.\) (thỏa)

Vậy \(n=1002\) thì \(n^2+4n+2013\) là SCP

Bình luận (0)
VD
10 tháng 11 2017 lúc 12:27

Đặt n2+4n+2013=m2

⇔2009=(m−n−2)(m+n+2)

m,n là số tự nhiên nên chia TH ra để tìm

Bình luận (0)
LT
28 tháng 11 2017 lúc 22:07

Đặt \(n^2+4n+2013=k^2\left(k\in Z\right)\) (bạn xem lại đề nhé \(n\in Z\) thì k\(\in Z\) mình phải lấy như vậy vì nếu ko sẽ có nhiều GT của k lắm ko xét được)

\(n^2+4n+2013=k^2\)

\(\Leftrightarrow n^2+4n+4+2009=k^2\)

\(\Leftrightarrow\left(n+2\right)^2+2009=k^2\)

\(\Leftrightarrow k^2-\left(n+2\right)^2=2009\)

\(\Leftrightarrow\left(k-n-2\right).\left(k+n+2\right)=2009\)=-1.(-9)=1.9

Do (k-n-2)<(k+n+2) nên ta có:

\(\left\{{}\begin{matrix}k-n-2=1\\k+n+2=2009\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n=1002\\k=1005\end{matrix}\right.\)

hoặc \(\left\{{}\begin{matrix}k-n-2=-2009\\k+n+2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n=1002\\k=1005\end{matrix}\right.\)

Vậy n=1002

Bình luận (0)