Tìm giá trị của B thỏa mãn :
\(\left(\frac{a}{b}\right)^3=\frac{1}{1000}\)và b - a = 36
Giá trị thỏa mãn của b:
\(\left(\frac{a}{b}\right)^3=\frac{1}{1000}\) và b - a = 36
Ta có:
\(\left(\frac{a}{b}\right)^3=\frac{1}{1000}=\left(\frac{1}{10}\right)^3\)
\(\Rightarrow\frac{a}{b}=\frac{1}{10}\Rightarrow\frac{a}{1}=\frac{b}{10}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{1}=\frac{b}{10}=\frac{b-a}{10-1}=\frac{36}{9}=4\)
\(\Rightarrow\begin{cases}a=4.1=4\\b=4.10=40\end{cases}\)
Vậy a = 4; b = 10
Giá trị của b thỏa mãn
\(\left(\frac{a}{b}\right)^3=\frac{1}{1000}vab-a=36\)
the bài ra, ta có:
\(\left(\frac{a}{b}\right)^3=\frac{1}{1000}\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{1}{10}\right)^3\\ \Rightarrow\frac{a}{b}=\frac{1}{10}\)
theo tính chất tỉ lệ thức ta có:
\(\frac{a}{b}=\frac{1}{10}\Rightarrow\frac{a}{1}=\frac{b}{10}\)
áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{a}{1}=\frac{b}{10}=\frac{b-a}{10-1}=\frac{36}{9}=4\)
=> a = 4
=> b = 4.10 => b = 40
vậy a = 4, b = 40
\(\left(\frac{a}{b}\right)^3=\frac{1}{1000}\\ \Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{1}{10}\right)^3\\ \Rightarrow\frac{a}{b}=\frac{1}{10}\)
=> 10a=b và ab -a = 36
Tự xử
tìm b thỏa mãn :\(\left(\frac{a}{b}\right)^3=\frac{1}{1000}\)Và \(b-a=36\)
(\(\frac{a}{b}\))3=\(\frac{1}{1000}\)=(\(\frac{1}{10}\))3 => a/b=1/10 hay b=10a
=> 10a-9a=36 <=> 9a=36 => a=4; b=36+4=40
ĐS: a=4; b=40
a)Giá trị x>0 thõa mãn
\(\frac{11}{14}+\left|\frac{2}{7}-x\right|-\frac{5}{2}=\frac{4}{3}\)
b)giá trị của a thõa mãn
\(\frac{a}{b}=\frac{-2.5}{4.5}\)và a+b=1,44
c)giá trị của b thõa mãn
\(\left(\frac{a}{b}\right)^3=\frac{1}{1000}\)và b-a=36
d) giá trị x thõa mãn
\(2\div\frac{3}{5}=-1\frac{3}{4}\div\left(\frac{-9}{20}x\right)\)
e)giá trị biểu thức
\(2.5\times\left(-3x+1\right)^2-12\left|x\right|-9\)
tại x=-0,2
1)cho a,b,c dương thỏa mãn abc=1
tìm giá trị nhỏ nhất của B=\(\frac{\sqrt{a^3+b^3+1}}{ab}+\frac{\sqrt{b^3+a^3+1}}{bc}+\frac{\sqrt{c^3+a^3+1}}{ca}\)
2) cho x,y,z dương
tìm giá trị nhỏ nhất của P=\(x\left(\frac{x}{2}+\frac{1}{yz}\right)+y\left(\frac{y}{2}+\frac{1}{xz}\right)+z\left(\frac{z}{2}+\frac{1}{xy}\right)\)
cho 3 số thực a,b,c thỏa mãn a+b+c=1. Tìm giá trị nhỏ nhất của biểu thức sau
\(P=\frac{2}{\left(a+b\right)\left(b+c\right)}+\frac{2}{\left(a+b\right)\left(a+c\right)}+\left(2+c\right)\left(3+a+b\right)\)
dang no giong bai bdt vap LHP chuyen nam 2017-2018
cho 3 số thực dương a,b,c thỏa mãn a+b<_c. Tìm giá trị nhỏ nhất của biểu thức\(P=\left(a^2+b^2+c^2\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
Dùng Buniacoxki
=> MinP=9 khi a=b=c
với các ố thực dương thỏa mãn a+b+c=1
Tìm giá trị nhỏ nhất của \(P=2018\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{3\left(a^2+b^2+c^2\right)}\)
Với \(a=b=c=\frac{1}{3}\Rightarrow P=2019\)
Ta sẽ chứng minh \(P=2019\) là GTNN của \(P\)
Thật vậy \(2018\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{3\left(a^2+b^2+c^2\right)}\ge2019\)
\(\Leftrightarrow2018\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-1\right)+\frac{\left(a+b+c\right)^2}{3\left(a^2+b^2+c^2\right)}-1\ge0\)
\(\Leftrightarrow2018\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\left(a+b+c\right)\right)+\frac{\left(a+b+c\right)^2-3\left(a^2+b^2+c^2\right)}{3\left(a^2+b^2+c^2\right)}\ge0\)
\(\Leftrightarrow2018\left(\frac{\left(a-b\right)^2}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{a}\right)-\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{3\left(a^2+b^2+c^2\right)}\ge0\)
\(\LeftrightarrowΣ_{cyc}\left(\left(a-b\right)^2\left(\frac{2018}{b}-\frac{1}{3\left(a^2+b^2+c^2\right)}\right)\right)\ge0\) *Luôn đúng*
b1 GIÁ TRỊ a THỎA MÃN
\(\frac{a}{b}\)=\(\frac{-2,5}{4,5}\)và a+b=1,44
b2GIÁ TRỊ b THỎA MÃN
\(\frac{a}{b}^3\)=\(\frac{1}{1000}\)và b-a=36
b3GIÁ TRỊ a THỎA MÃN
\(\frac{a}{b}=\frac{1,2}{3,2}\)và b-a=5,96
b4GÍA TRỊ NHỎ NHẤT CỦA
|2y+7,4|+6,2+|-x+21|
b5 GiÁ TRỊ CỦA a THỎA MÃN
\(\frac{a}{b}=\frac{-2,5}{4,5}v\text{à}\)a+b=5
b6 BIẾT RẰNG a:b=3:5 và 3a-b=17,2 GÍA TRỊ a+b
b7CHO 2 SỐ x,y THỎA MÃN (2x+1)\(^{^2}\)+|y-1,2|=0 GIÁ TRỊ x+y
b8 GTNN của biểu thức C=\(\frac{1}{3}\)(x-\(\frac{2}{5}\))\(^2\)+|2y+1|-2,5
b9 a:b=3:4 và a\(^2\)+b\(^2\)=36 GIÁ TRỊ a.b