Có : (a/b)^3 = 1/1000 =(1/10)^3
<=> a/b = 1/10
<=> a = b/10
Khi đó : b - b/10 = 36
<=> 9/10 . b = 36
<=> b = 36 : 9/10 = 40
<=> a = b/10 = 40/10 = 4
Vậy a= 4; b= 40
Có : (a/b)^3 = 1/1000 =(1/10)^3
<=> a/b = 1/10
<=> a = b/10
Khi đó : b - b/10 = 36
<=> 9/10 . b = 36
<=> b = 36 : 9/10 = 40
<=> a = b/10 = 40/10 = 4
Vậy a= 4; b= 40
Giá trị của b thỏa mãn
\(\left(\frac{a}{b}\right)^3=\frac{1}{1000}vab-a=36\)
tìm b thỏa mãn :\(\left(\frac{a}{b}\right)^3=\frac{1}{1000}\)Và \(b-a=36\)
a)Giá trị x>0 thõa mãn
\(\frac{11}{14}+\left|\frac{2}{7}-x\right|-\frac{5}{2}=\frac{4}{3}\)
b)giá trị của a thõa mãn
\(\frac{a}{b}=\frac{-2.5}{4.5}\)và a+b=1,44
c)giá trị của b thõa mãn
\(\left(\frac{a}{b}\right)^3=\frac{1}{1000}\)và b-a=36
d) giá trị x thõa mãn
\(2\div\frac{3}{5}=-1\frac{3}{4}\div\left(\frac{-9}{20}x\right)\)
e)giá trị biểu thức
\(2.5\times\left(-3x+1\right)^2-12\left|x\right|-9\)
tại x=-0,2
Cho a,b,c là các số khác 0 thỏa mãn điều kiện
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tìm giá trị của biểu thức \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)
cho a,b,c là 3 số thực khác 0,thỏa mãn điều kiện:\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Hãy tính giá trị của biểu thức:\(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)
cho a,b,c là 3 số thực dương thỏa mãn điều kiện
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
tính giá trị của biểu thức \(P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)
cho a,b,c là 3 số thực dương thỏa mãn điều kiện
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Hãy tính giá trị của biểu thức:
\(B=\left(1+\frac{b}{a}\right).\left(1+\frac{a}{c}\right).\left(1+\frac{c}{b}\right)\)
1. Tính giá trị biểu thức:
A = \(\left(3\frac{1}{3}.1,9+19,5:4\frac{1}{3}\right)\): \(\left(\frac{62}{75}-\frac{4}{25}\right)\)
2.Tìm giá trị của x, y thỏa mãn:
a) \(\left(x-2018\right)^{x+1}\)- \(\left(x-2018\right)^{x+2019}\)= 0
b) 2x = 5y và x . y = 40
Cho a,b,c là các số khác 0 thỏa mãn: \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Tính giá trị của biểu thức: P = \(\left(1+\frac{b}{a}\right).\left(1+\frac{c}{b}\right).\left(1+\frac{a}{c}\right)\)