cho hình thang ABCD (góc A=D=90o ), gọi m là trung điểm của BC .CMR tam giác MAD cân
Cho hình thang vuông ABCD, góc A bằng góc D cùng bằng 90 độ. Gọi M, N lần luợt là trung điểm của BC, AD. CMR
a/ Tam giác MAD cân
b/ Góc MAB bằng góc MDC
cho hình thang vuông ABCD,có góc a= 90 độ, gọi m là trung điểm của bc. C/m: tam giác mad là tam giác cân ?
Gọi I là trung điểm của AD
Hình thang ABCD(AB//CD) có
M là trung điểm của BC(gt)
I là trung điểm của AD(gt)
Do đó: MI là đường trung bình của hình thang ABCD(Định nghĩa đường trung bình của hình thang)
Suy ra: MI//AB//CD và \(MI=\dfrac{AB+CD}{2}\)
hay MI\(\perp\)AD
Xét ΔAMI vuông tại I và ΔDMI vuông tại I có
DI chung
AI=DI(I là trung điểm của AD)
Do đó: ΔAMI=ΔDMI(hai cạnh góc vuông)
Suy ra: MA=MD
hay ΔMAD cân tại M
Cho hình thang vuông ABCD (góc A=góc D=90°) gọi M là trung điểm của BC. Chứng minh rằng tam giác MAD là tam giác cân (Gợi ý:kẻ MN//AD, MN cắt tại AD tại N)
Gọi H là trung điểm của AD
Xét hình thang ABCD có
H là trung điểm của AD
M là trung điểm của BC
Do đó: HM là đường trung bình của hình thang ABCD
Suy ra: HM//AB//CD
hay HM\(\perp\)AD
Xét ΔMAD có
MH là đường trung tuyến ứng với cạnh AD
MH là đường cao ứng với cạnh AD
Do đó: ΔMAD cân tại M
cho hình thang vuông ABCD,có góc a= 90 độ, gọi m là trung điểm của bc. C/m: tam giác mad là tam giác cân ?
Gọi I là trung điểm của AD
Hình thang ABCD(AB//CD) có
M là trung điểm của BC(gt)
I là trung điểm của AD(gt)
Do đó: MI là đường trung bình của hình thang ABCD(Định nghĩa đường trung bình của hình thang)
Suy ra: MI//AB//CD và \(MI=\frac{AB+CD}{2}\)
Hay MI⊥AD
Xét ΔAMI vuông tại I và ΔDMI vuông tại I có
DI chung
AI=DI(I là trung điểm của AD)
Do đó: ΔAMI=ΔDMI(hai cạnh góc vuông)
Suy ra: MA=MD
hay ΔMAD cân tại M
Cho hình thang vuông ABCD, góc A= góc D=90o .Gọi M,N lần lượt là trung điểm của các cạnh BC, AD. Cm
a) Tam giác MAD là tam giác cân
b) Góc MAB= góc MDC
Bài làm
ADBCNM
a, Vì M là trung điểm của BC, N là trung điểm của AD .
⇒⇒ MN là đường trung bình của hình thang ABCD .
⇒MN⇒MN//ABAB//CDCD
mà theo gt Aˆ=900=>AB⊥ADA^=900=>AB⊥AD
=>MN⊥AD=>MN⊥AD
Trong tam giác MAD có :
MN là đường trung trực ( cmt )
MN là đường trung tuyến ( vì N là trung điểm của AD )
⇒ΔMAD⇒ΔMAD cân tại M .
b,Có ΔMADΔMAD cân tại M −>MADˆ=MDAˆ−>MAD^=MDA^
mà Aˆ=DˆA^=D^
=>Aˆ−MADˆ=Dˆ−MDAˆ=>A^−MAD^=D^−MDA^
=>MABˆ=MDCˆ(đpcm)=>MAB^=MDC^(đpcm).
Cho hình thang vuông ABCD ( góc A = góc D =90 ) . Gọi M ,N lần lượt là trung điểm của BC , AD .
C/m : a) tam giác MAD cân
b) goc MAB = goc MDC
a/
có M là trung điểm BC
N là trung điểm AD
=> MN//AB//DC ( Tính chất đường trung bình)
=> MN vuông AD
Xét tam giác MAD có
MN vừa là đường trung tuyến ( N là trung điểm AD) vùa là đường trung trực ( N là trung điểm AD và MN vuông AD)
=>tam giác MAD cân tại M
b/
Ta có tam giác MAD cân tại M => góc MAD =góc MDA (1)
ta có GÓC MAB+ GÓC MAD = 90 ĐỘ(2)
GÓC MDA +GÓC MDC =90ĐỘ (3)
(1) (2) (3) => GÓC MAB = GÓC MDC
Cho hình thang vuông ABCD có A=D=90 độ
Gọi M,N lần lượt là trung đ' của các cạnh BC,AD
CM
a) tam giác MAD là tam giác cân
b) góc MAB=góc MDC
\(a,\) Xét hình thang \(ABCD\) có M là trung đ' BC (gt)
N là trung đ' AD (gt)
=> MN là đg trung bình của hình thang ABCD
=> MN // AB => MN \(\perp\)AD
Xét \(\Delta AMD\)có: MN là trung đ' đồng thời là đcao
=> \(\Delta AMD\) cân tại A (đpcm)
b,Vì \(\Delta AMD\) cân tại A => \(\widehat{NAM}=\widehat{NDM}\)
mà \(\widehat{MAB}=90^O-\widehat{NAM}\)
\(\widehat{MDC}=90^O-\widehat{NDM}\)
\(\widehat{\Rightarrow MAB}=\widehat{MDC}\) (đpcm)
Bài 1 Cho hình thang ABCD(AB//CD), gọi E, F, I, K theo thứ tự là trung điểm của AD, BC, AC,BD. Tính độ dài của các đoạn EK, KI, IF biết AB=18cm và CD=12cm.
Bài 2 Cho hình thang vuông ABCD(A=D=90°),gọi M là trung điểm của BC. Chứng minh rằng Tam giác MAD là tam giác cân.
Vẽ hình ra nhé
Cho hình thang vuông ABCD,góc A bằng góc D bằng 90 độ.Gọi M,N lần lượt là trung điểm của BC,AD.Chứng minh
a)tam giác MAD cân
b)góc MAB= góc MDC
a/
có M là trung điểm BC
N là trung điểm AD
=> MN//AB//DC ( Tính chất đường trung bình)
=> MN vuông AD
Xét tam giác MAD có
MN vừa là đường trung tuyến ( N là trung điểm AD) vùa là đường trung trực ( N là trung điểm AD và MN vuông AD)
=>tam giác MAD cân tại M
b/
Ta có tam giác MAD cân tại M => góc MAD =góc MDA (1)
ta có GÓC MAB+ GÓC MAD = 90 ĐỘ(2)
GÓC MDA +GÓC MDC =90ĐỘ (3)
(1) (2) (3) => GÓC MAB = GÓC MDC