Tìm giá trị nhỏ nhất của biểu thức: B = 5x^2 + y^2 - 4xy + 8y -6y + 2013
tìm giá trị nhỏ nhất của các biểu thức
A=2x^2-10x+17
B=(x-1)(x+2)(x+3)(x+6)
C=5x^2+y^2+10+4xy-14x-6y
D=2x^2+2y^2+26+12x-8y
E=5x^2+10y^2+26-14xy-18x-28y
tìm giá trị nhỏ nhất của biểu thức sau : M = 5x2 + y2 + 4xy - 14x - 6y + 2025
tìm giá trị nhỏ nhất của biểu thức sau : M = 5x2 + y2 + 4xy - 14x - 6y + 2025
phân tich M=(2x+y)2 + (x-1)2 - 6(2x+y) + 2024
M= ( 2x + y - 3 )2 + ( x- 1 )2 + 2015
M >= 2015
Dấu = xảy ra khi 2x + y - 3 = 0 và x-1 =0
suy ra x = y = 1
vậy GTNN M= 2015 khi và chi khi x=y=1
Tìm giá trị nhỏ nhất của các biểu thức sau:
a) A=2x^2-3x+1
b) B=5x^2+y^2+10+4xy-14x-6y
a)
\(A=2x^2-3x+1=2\left(x^2-\frac{3}{2}x+\frac{9}{16}\right)-2.\frac{9}{16}+1=2\left(x-\frac{3}{4}\right)^2-\frac{1}{8}\ge-\frac{1}{8}\)
Vậy \(MinA=-\frac{1}{8}\Leftrightarrow\left(x-\frac{3}{4}\right)^2=0\Leftrightarrow x=\frac{3}{4}\)
b)
\(B=5x^2+y^2+10+4xy-15x-6y\)
\(=\left[\left(2x\right)^2+y^2-3^2+2.2x.y-2.y.3-2.2x.3\right]+\left(x^2-3x+\frac{9}{4}\right)+\frac{27}{4}\)
\(=\left(2x+y-3\right)^2+\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\ge\frac{27}{4}\)
Vậy \(MinB=\frac{27}{4}\Leftrightarrow\hept{\begin{cases}\left(2x+y-3\right)^2=0\\\left(x-\frac{3}{2}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x+y-3=0\\x-\frac{3}{2}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{2}\\y=0\end{cases}}}\)
Bài 2.17) Tìm giá trị nhỏ nhất của các biểu thức sau
a) f(x,y)=x2+y2-6x+5y+1
b) g(x,y)= 5x2+y2+10+4xy-14x-6y
A= (x2+4y2+9/4+4xy+3x+3y) + (y2+5x+95/4)
= (x+2y+3/2)2 + (y+5/2)2 + 15
=> A min = 15
Dấu "=" xảy ra khi y=-5/2 ; x=7/2
\(A=x^2+5y^2+4xy+3x+8y+26\)
\(=\left(x^2+4xy+4y^2\right)+\left(3x+6y\right)+\frac{9}{4}+\left(y^2+2y+1\right)+\frac{91}{4}\)
\(=\left(x+2y\right)^2+3\left(x+2y\right)+\frac{9}{4}+\left(y+1\right)^2+\frac{91}{4}\)
\(=\left(x+2y+\frac{3}{2}\right)^2+\left(y+1\right)^2+\frac{91}{4}\ge\frac{91}{4}\forall x,y\)
Dấu"="xảy ra khi \(\orbr{\begin{cases}x+2y+\frac{3}{2}=0\\y+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x+2y=-\frac{3}{2}\\y=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}}\)
Vậy .....
tìm giá trị nhỏ nhất của A=5x^2+y^2+10+4xy-14x-6y
\(A=\left(4x^2+y^2+4xy\right)-12x-6y+9+x^2-2y+1\)
\(=\left(2x+y\right)^2-6\left(2x+y\right)+9+\left(x-1\right)^2\)
\(=\left(2x+y-3\right)^2+\left(x-1\right)^2\ge0\) có GTNN là \(0\)
Dấu "=" xảy ra \(\Leftrightarrow x=1;y=1\)
A = ( 4x^2 + y^2 +9 + 4xy -6y -12x)+(x^2 -2x+1)
= (2x+y-3)^2 +(x-1)^2
Ta có: (2x+y-3)^2 +(x-1)^2 >=0 với mọi x,y
Dấu "=" xảy ra khi: 2x+y-3 =0 và x-1=0
2.1 + y-3 =0 và x=1
-1+y=0 và x=1
y=1 và x=1
Vậy giá trị nhỏ nhất của A là 0 tại x=1 và y=1
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
tìm giá trị nhỏ nhất của biểu thức A=5x^2+y^2+4xy-2x-2y+2020
Lời giải:
$A=5x^2+y^2+4xy-2x-2y+2020$
$=(4x^2+y^2+4xy)+x^2-2x-2y+2020$
$=(2x+y)^2-2(2x+y)+x^2+2x+2020$
$=(2x+y)^2-2(2x+y)+1+(x^2+2x+1)+2018$
$=(2x+y-1)^2+(x+1)^2+2018\geq 2018$
Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $2x+y-1=0$ và $x+1=0$
Hay $x=-1; y=3$