Chứng minh rằng m/n= 1+1/2+1/3+1/4+1/5+1/6 chia hết cho 7
giúp mình với mai đi học rùi bạn nào biết làm chỉ mình cách cụ thể nha ! giúp nha gấp lắm
Bài 1 : tìm N thuộc N , biết :
a) 1<2^n < 128
b) 9 , 3^n < 729
c) 1 <=3^2n <= 27 ^ 2
BÀi 2 : chứng minh rằng
a) 5^7 - 5^6 + 5^5 chia hết cho 21
b) 7^6 + 7^5 - 7^4 chia hết cho 77
Bài 3 : chứng minh rằng
a)5+ 5^2 + 5^3 + 5^4 .....+ 5^120 chia hết cho 156
b) 1 + 7 + 7^2 + 763 +....+ 7^98 chia hết cho 57
Bài 4 : chứng minh rằng
a) 1+2+ 2^2 + 2^3 + 2^4 +......+ 2 ^ 63 = 2 ^ 64-1
1) Cho 2 số tự nhiên a và b, biết 2 chia cho 6 dư 2 và b chia cho 6 dư 3. . Chứng minh rằng ab chia hết cho 6.
2) Cho a và b là 2 sớ tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1.
3) Cho 2 số tự nhiên a và b, biết a chia cho 6 dư 3 và ab chia hết cho 6. . Hỏi b chia cho 6 có số dư là bao nhiêu? Chứng minh.
4) Chứng minh rằng: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với n là số tự nhiên.
5) Chứng minh rằng với mọi số nguyên n biểu thức (n - 1) (n + 4) - (n - 4) (n + 1) luôn chia hết cho 6.
Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6
Bài 1:
Ta có: \(\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{6}-1\right)\left(\dfrac{1}{10}-1\right)\cdot...\cdot\left(\dfrac{1}{45}-1\right)\)
\(=\dfrac{-2}{3}\cdot\dfrac{-5}{6}\cdot\dfrac{-9}{10}\cdot...\cdot\dfrac{-44}{45}\)
\(=\dfrac{-2}{3}\cdot\dfrac{-5}{6}\cdot\dfrac{-9}{10}\cdot\dfrac{-14}{15}\cdot\dfrac{-20}{21}\cdot\dfrac{-27}{28}\cdot\dfrac{-35}{36}\cdot\dfrac{-44}{45}\)
\(=\dfrac{11}{27}\)
Câu 2:
B=1+1/2+1/3+....+1/2010
=(1+1/2010)+(1/2+1/2009)+(1/3+1/2008)+...(1/1005+1/1006)
= 2011/2010+2011/2.2009+2011/3.2008+...+2011/1005.1006
=2011.(1/2010+.....1/1005.1006)
Vậy B có tử số chia hết cho 2011 (đpcm).
Câu 3:
\(P=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}....\dfrac{98}{99}\\ P< \dfrac{3}{4}.\dfrac{5}{6}.\dfrac{6}{7}....\dfrac{99}{100}\\ P^2< \dfrac{2}{100}\)
Mà
\(\dfrac{2}{100}=\dfrac{1}{50}< \dfrac{1}{49}\\ \Rightarrow P< \dfrac{1}{7}\)
Cho phân số: m/n = 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6. Chứng tỏ rằng m chia hết cho 7
Bạn tính ra rồi lấy tử rồi chứng minh
Bài 1
a) Viết tổng sau thành 1 tích
3^4+3^5+3^6+3^7
b)Chứng minh rằng
a)A=1+3+3^2+......3^99 chia hết cho 40
Bài 2 Chứng minh rằng
a) A=5+5^2+5^3+.....+5^2004 cha hết cho 6 ,31,156
b)B=165+2^15 chia hết cho 33
Bài 3 Cho M = 1+2+2^2+....+2^200
a)Viết M+1 dưới dạng lũy thừa
b)N=3+3^2+.....+3^2015
Chứng minh rằng 2N+3 là 1 lũy thừa
Bài 1
a) 34 + 35 + 36 + 37 = 34(1 + 3 + 32 + 33)\
b) a)A = 1 + 3 + 32 +......399 =(1 + 3 + 32 + 33 ) + ...+(396 + 397 + 398 + 399)
= (1 + 3 + 32 + 33 ) + .. +396(1 + 3 + 32 + 33 )
= 40 + ... + 396 . 40
= 40 (1 + 3 +...+ 396) chia hết cho 40
Bài 2
a)
+)A chia hết cho 6
\(A=5+5^2+5^3+...+5^{2004}\)
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2003}+5^{2004}\right)\)
\(A=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{2002}\left(5+5^2\right)\)
\(A=30+5^2.30+...+5^{2002}.30\)
\(A=30\left(1+5^2+...+5^{2002}\right)\)chia hết cho 6
+)A chia hết cho 31
\(A=5+5^2+5^3+...+5^{2004}\)
\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{2002}+5^{2003}+5^{2004}\right)\)
\(A=\left(5+5^2+5^3\right)+5^3\left(5+5^2+5^3\right)+...+5^{2001}\left(5+5^2+5^3\right)\)
\(A=155+5^3.155+...+5^{2001}.155\)
\(A=155\left(1+5^3+...+5^{2001}\right)\)chia hết cho 31
+) A chia hết cho 156
\(A=5+5^2+5^3+...+5^{2004}\)
\(A=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+...+\left(5^{2001}+5^{2002}+5^{2003}+5^{2004}\right)\)
\(A=\left(5+5^2+5^3+5^4\right)+5^4\left(5+5^2+5^3+5^4\right)+...+5^{2000}\left(5+5^2+5^3+5^4\right)\)
\(A=780+5^4.780+...+5^{2000}.780\)
\(A=780\left(1+5^4+...+5^{2000}\right)\)chia hết cho 156
b)B=165+2^15 chia hết cho 33
ta có 165 chia hết cho 33
mà 215 ko chia hết cho 33
vậy 165+2^15 không chia hết cho 33 hay B không chia hết cho 33.
chứng tỏ A= 1+\(3^1\)+\(3^2\)+....+\(3^{99}\)là B(4) và là B (40).
a) Cho n không chia hết cho 3. Chứng minh n^2:3 dư 1
b) Cho n không chia hết cho 5. Chứng minh n^4 : 5 dư 1
c) Cho n không chia hết cho 7. Chứng minh n^6 :7 dư 1
a,
n kog chia hết cho 3. Ta có: n = 3k +1 và n = 3k+2
TH1: n2 : 3 <=> (3k+1)2 : 3 = (9k2+6k+1) : 3 => dư 1
TH2: n2 : 3 <=> (3k+2)2 : 3 = (9k2+12k+4) : 3 = (9k2+12k+3+1) : 3 => dư 1
các phần sau làm tương tự.
cho phân số:m/n=1 + 1/2 +1/3 +1/4 +1/5 +1/6.chứng minh rằng:tử số m chia hết cho 7
Ta có :
\(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\left(1+\frac{1}{6}\right)+\left(\frac{1}{2}+\frac{1}{5}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)\)
\(=\frac{7}{6}+\frac{7}{10}+\frac{7}{12}=\frac{7.21}{60}\)
vì tử số của phân số \(\frac{m}{n}\)bằng 7 . 21 m nên chia hết cho 7
m/n=1/2+1/3+1/4+1/5+1/6
chứng minh m chia hết cho 7
cho a/b = 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9 với a;b thuộc N. Chứng minh rằng a chia hết cho 11.