Cho x² + y² + z² = xy + yz + xz. Chứng minh x = y = z
Cho các số dương x,y,z . Chứng minh rằng:
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+yz+xy}\le\frac{x^2+y^2+z^2}{xy+yz+xz}\)
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
Chứng minh (x+y+z)^2-x^2-y^2-z^2=2(xy+yz+zx)
2) cho xyz=2016
chứng minh rằng 2016x/xy+2016x+2016 + y/yz+y+2016 + z/xz+z+1 = 1
Cho các số dương x,y,z .Chứng minh rằng:
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+yz+xy}\le\frac{x^2+y^2+z^2}{xy+yz+xz}\)
Trích: đề ms thi , thánh nào lớp 9 giúp dùm =="
bài này tao nhớ là đã từng xem qua nhưng h ko nhớ cho rõ nx
Cho x,y,z>=0 và xyz=1 Chứng minh rằng: xy+xz+yz>=√3(x+y+z)
Lời giải:
BĐT cần chứng mình tương đương với:
$(xy+yz+xz)^2\geq 3(x+y+z)$
$\Leftrightarrow (xy+yz+xz)^2\geq 3xyz(x+y+z)$
$\Leftrightarrow (xy)^2+(yz)^2+(zx)^2+2xyz(x+y+z)\geq 3xyz(x+y+z)$
$\Leftrightarrow (xy)^2+(yz)^2+(xz)^2\geq xyz(x+y+z)$
$\Leftrightarrow (xy)^2+(yz)^2+(xz)^2-xyz(x+y+z)\geq 0$
$\Leftrightarrow 2(xy)^2+2(yz)^2+2(xz)^2-2xyz(x+y+z)\geq 0$
$\Leftrightarrow (xy-yz)^2+(yz-xz)^2+(xz-xy)^2\geq 0$
(luôn đúng với mọi $x,y,z\geq 0$)
Dấu "=" xảy ra khi $x=y=z=1$
Cho tam giác ABC với AB = x, AC = y, BC = z . Hãy chứng minh : \(xy+yz+xz\le x^2+y^2+z^2< 2\left(xy+yz+xz\right)\)
Lời giải:
CM vế thứ nhất:
Xét hiệu: $x^2+y^2+z^2-(xy+yz+xz)=\frac{2x^2+2y^2+2z^2-2xy-2yz-2xz}{2}=\frac{(x-y)^2+(y-z)^2+(z-x)^2}{2}\geq 0$ với mọi $x,y,z$ là độ dài 3 cạnh tam giác.
$\Rightarrow x^2+y^2+z^2\geq xy+yz+xz$ (đpcm)
CM vế thứ 2:
Áp dụng BĐT tam giác ta có:
$x< y+z\Rightarrow x^2< x(y+z)$
$y< x+z\Rightarrow y^2< y(x+z)$
$z< x+y\Rightarrow z^2< z(x+y)$
Cộng theo vế 3 điều trên suy ra $x^2+y^2+z^2< 2(xy+yz+xz)$ (đpcm)
Vậy.........
cho 0<x,y,z<1. chứng minh x+y+z-xy-yz-xz<1
Cho xyz=1. Chứng minh: x/(xy+x+1)+y/(yz+y+1)+z/(xz+z+1)
(x/ 1+x+xy)+ (y/ 1+y+yz) + ( z/ 1+z+zx)
\(=\frac{1}{\left(yz+1+y\right)}+\frac{y}{\left(1+y+yz\right)}+\frac{yz}{\left(y+yz+xyz\right)}\)
\(=\frac{1}{\left(yz+1+y\right)}+\frac{y}{\left(1+y+yz\right)}+\frac{yz}{\left(y+yz+1\right)}\)
\(=\frac{\left(1+y+yz\right)}{\left(y+yz+1\right)}=1\)
Vậy (x/ 1+x+xy)+ (y/ 1+y+yz) + ( z/ 1+z+zx)=1(Đpcm)
chứng minh VT làm sao ? đề thiếu ?
Cho ba số x, y, z không âm. Chứng minh: \(x+y+z\ge-\sqrt{xy}-\sqrt{yz}-\sqrt{xz}\)
Cho \(x,y,z\in[0,1]\). Chứng minh:
\(\dfrac{x}{yz+1}+\dfrac{y}{xz+1}+\dfrac{z}{xy+1}< 2\)