Những câu hỏi liên quan
H24
Xem chi tiết
DH
10 tháng 5 2021 lúc 8:59

\(\overline{aa...abb...b}=\left(\overline{cc...c}\right)^2\)

\(\Leftrightarrow a.11...1.10^n+b.11...1=c^2.11...1^2\)

\(\Leftrightarrow a.10^n+b=c^2.11...1\)

\(\Leftrightarrow a.\left(9k+1\right)+b=c^2.k\)(với \(k=11...1\)(\(n\)chữ số \(1\))) 

\(\Leftrightarrow\left(c^2-9a\right)k=a+b\)

Với \(k=1\)ta có: \(c^2=10a+b\)ta có các bộ số: 

\(\left(1,6,4\right),\left(2,5,5\right),\left(3,6,6\right),\left(4,9,7\right),\left(6,4,8\right),\left(8,1,9\right)\)

Với \(k=11\)ta có \(11\left(c^2-9a\right)=a+b\)nên \(\hept{\begin{cases}a+b=11\\c^2-9a=1\end{cases}}\)ta có nghiệm duy nhất \(\left(7,4,8\right)\).

Với \(n>2\)ta thấy hiển nhiên không thỏa mãn do \(a+b< 19\)

Bình luận (0)
 Khách vãng lai đã xóa
DH
10 tháng 5 2021 lúc 19:20

Ở đây mình làm trường hợp là nó đúng chỉ với 1 giá trị của \(n\). Do đó ta xét với \(n=1,n=2,...\), tức là \(k=1,k=11,...\). Còn nếu đề là đúng với mọi số nguyên dương \(n\)thì sẽ làm khác một chút, và ra đáp án là không tồn tại giá trị nào cả. 

Bình luận (0)
 Khách vãng lai đã xóa
DH
11 tháng 5 2021 lúc 20:46

\(\overline{aa...abb...b}+1=\left(cc...c+1\right)^2\)

\(\Leftrightarrow a.k.10^n+b.k+1=\left(c.k+1\right)^2,k=11...1\)

\(\Leftrightarrow ak.\left(9k+1\right)+bk=c^2k^2+2ck\)

\(\Leftrightarrow a\left(9k+1\right)+b=c^2k+2c\)

\(\Leftrightarrow k\left(9a-c^2\right)=2c-b-a\)

Đẳng thức trên đúng với mọi \(k\inℕ^∗\)nên \(\hept{\begin{cases}9a-c^2=0\\2c-a-b=0\end{cases}}\)

Từ \(9a-c^2=0\)ta có các trường hợp \(\left(a,c\right)\in\left\{\left(1,3\right),\left(4,6\right),\left(9,9\right)\right\}\).

Kết hợp với \(2c-a-b=0\)ta có các trường hợp sau thỏa mãn: \(\left(a,b,c\right)\in\left\{\left(1,5,3\right),\left(4,8,6\right),\left(9,9,9\right)\right\}\).

Bình luận (0)
 Khách vãng lai đã xóa
BL
Xem chi tiết
BL
1 tháng 2 2020 lúc 23:16

Nguyễn Thành Trương, Vũ Minh Tuấn, Băng Băng 2k6, Trần Thanh Phương, Nguyễn Lê Phước Thịnh, tth,

Nguyễn Văn Đạt, Hồ Bảo Trâm, Lê Thị Thục Hiền, @Akai Haruma, @Nguyễn Việt Lâm

giúp e vs ạ! Cần gấp! Thanks!

Bình luận (0)
 Khách vãng lai đã xóa
DH
2 tháng 2 2020 lúc 9:48

Bài 1:

Đặt: \(\left\{{}\begin{matrix}A=\overline{abc}\\B=\overline{def}\end{matrix}\right.\left(100\le A;A,B\le999\right)\)

Khi đó ta có: \(999A=\left(A+B\right)\left(A+B-1\right)\)

Vì: \(A\le999\) nên:

\(\Rightarrow\left(A+B\right)\left(A+B-1\right)\le999^2\)

\(\Rightarrow A+B\le999\)

Xét các trường hợp \(A=999\)\(A< 999\) từ đó :

\(\Rightarrow\overline{abcdef}=494209\)

Vậy số cần tìm là: \(494209\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
HM
Xem chi tiết
NT
9 tháng 4 2015 lúc 22:04

tớ mới học lớp 6 

 

Bình luận (0)
HM
Xem chi tiết
VB
Xem chi tiết
ND
3 tháng 1 2015 lúc 21:32

Bài 1: n có 4 chữ số dạng 20ab => 20ab + 2 + a +b=2013 => 11a+b=11

a=0 => b=11(loại)

a=1 => b=0 => n=2010

với n<2000 => tổng các chữ số của n lớn nhất là: 1+9+9+9=28 => n  ≥ 2013-28=1985

xét n có dạng 19ab: 19ab+1+9+a+b=2013 => 11a+b=103

do n ≥ 1985 => a ≥ 8

a=8 => b=7,5 (loại)

a=9 => b=2 => n=1992

Bình luận (0)
ND
3 tháng 1 2015 lúc 21:40

Bài 2: Chắc là hợp số :D

từ \(a^2+b^2+c^2=e^2+f^2+d^2\)

=> \(a^2+b^2+c^2\text{ ≡}d^2+e^2+f^2\)(mod 2)

=> \(a^2+b^2+c^2+2\left(ab+bc+ca\right)\)  ≡ \(d^2+e^2+f^2+2\left(de+ef+fd\right)\)(mod 2)

=>\(\left(a+b+c\right)^2\text{ ≡}\left(d+e+f\right)^2\) (mod 2)

=>a+b+c ≡ d+e+f (mod 2)

=> a+b+c+d+e+f chia hết cho 2

Bình luận (0)
PT
Xem chi tiết
H24
Xem chi tiết
KN
Xem chi tiết