giải/hệ/phương/trình:x^2-xy-2y^2=0
3x+y=1
Giải hệ phương trình:x^3+1=2y và y^3+1=2x
`x^3+1=2y,y^3+1=2x`
`=>x^3-y^3=2y-2x`
`<=>(x-y)(x^2+xy+y^2)+2(x-y)=0`
`<=>(x-y)(x^2+xy+y^2+2)=0`
Vì `x^2+xy+y^2+2>=2>0`
`=>x-y=0<=>x=y` thay vào bthức
`=>x^3+1=2x`
`<=>x^3-2x+1=0`
`<=>x^3-x^2+x^2-2x+1=0`
`<=>x^2(x-1)+(x-1)^2=0`
`<=>(x-1)(x^2+x-1)=0`
`+)x=1=>x=y=1`
`+)x^2+x-1=0`
`\Delta=1+4=5`
`=>x_1=(-1-sqrt5)/2,x_2=(-1+sqrt5)/2`
`=>x=y=(-1-sqrt5)/2,x=y=z(-1+sqrt5)/2`
Vậy `(x,y)=(1,1),((-1-sqrt5)/2,(-1-sqrt5)/2),((-1+sqrt5)/2,(-1+sqrt5)/2)`
Giải hệ phương trình:x+2y=3;-2x-y=6
\(\hept{\begin{cases}x+2y=3\\-2x-y=6\end{cases}< =>\hept{\begin{cases}x=3-2y\\-2\left(3-2y\right)-y\end{cases}< =>\hept{\begin{cases}x=3-2y\\-6+4y=6\end{cases}< =>\hept{\begin{cases}x=3-2y\\4y=12\end{cases}< =>\hept{\begin{cases}x=-3\\y=3\end{cases}}}}}}\)
câu 1:
1)giải phương trình:x(3+x)=4
2)giải hệ phương trình:\(\left\{{}\begin{matrix}2x-3y-1=0\\\dfrac{x}{2}=\dfrac{2y+1}{3}\end{matrix}\right.\)
1: =>x^2+3x-4=0
=>(x+4)(x-1)=0
=>x=1 hoặc x=-4
2: =>2x-3y=1 và 3x=4y+2
=>2x-3y=1 và 3x-4y=2
=>x=2 và y=1
giải/hệ/phương/trình:x+y=3
x^2+y^2=5
bài 1:giải hệ phương trình \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}}\)
Bài 2: giải hệ phương trình \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}}\)
1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)
\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)
+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)
+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:
\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)
Vậy hệ có nghiệm (1;1),(-1;-1).
2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)
\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)
Vậy hệ có nghiệm (1;1).
cho hệ phương trình:x+2y=m+3; 2x-3y=m
tìm m để hệ phương trình có nghiệm(x;y) sao cho P=98(x^2+y^2)+4m đạt GTNN
giúp mk vs
giải hệ phương trình \(\left\{{}\begin{matrix}mx+2y=m+1\\x-y=2\end{matrix}\right.\)
a, giải hệ phương trình khi m=2
b, tìm m để hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn xy = x+y+2
`x-y=2<=>x=y+2` thay vào trên
`=>m(y+2)+2y=m+1`
`<=>y(m+2)=m+1-2m`
`<=>y(m+2)=1-2m`
Để hpt có nghiệm duy nhất
`=>m+2 ne 0<=>m ne -2`
`=>y=(1-2m)/(m+2)`
`=>x=y+2=5/(m+2)`
`xy=x+y+2`
`<=>(5-10m)/(m+2)=(6-2m)/(m+2)+2`
`<=>(5-10m)/(m+2)=10/(m+2)`
`<=>5-10m=10`
`<=>10m=-5`
`<=>m=-1/2(tm)`
Vậy `m=-1/2` thì HPT có nghiệm duy nhât `xy=x+y+2`
`a)m=2`
$\begin{cases}2x+2y=3\\x-y=2\end{cases}$
`<=>` $\begin{cases}2x+2y=3\\2x-2y=4\end{cases}$
`<=>` $\begin{cases}4y=-1\\x=y+2\end{cases}$
`<=>` $\begin{cases}y=-\dfrac14\\y=\dfrac74\end{cases}$
Vậy m=2 thì `(x,y)=(7/4,-1/4)`
Sửa đoạn `xy=x+y+2`
``<=>(5-10m)/(m+2)^2=(6-2m)/(m+2)+2`
`<=>(5-10m)/(m+2)^2=10/(m+2)`
`<=>5-10m=10(m+2)`
`<=>1-2m=2m+4`
`<=>4m=-3`
`<=>m=-3/4(tm)`
giải hệ phương trình:
x y ( 4 x y + y + 4 ) = y 2 ( 2 y + 5 ) − 1
2 x y ( x − 2 y ) + x − 14 y = 0
Giải hệ phương trình 2 x 2 − y 2 + x y − 5 x + y + 2 = y − 2 x + 1 − 3 − 3 x x 2 − y − 1 = 4 x + y + 5 − x + 2 y − 2
ĐK: y − 2 x + 1 ≥ 0 , 4 x + y + 5 ≥ 0 , x + 2 y − 2 ≥ 0 , x ≤ 1
T H 1 : y − 2 x + 1 = 0 3 − 3 x = 0 ⇔ x = 1 y = 1 ⇒ 0 = 0 − 1 = 10 − 1 ( k o t / m ) T H 2 : x ≠ 1 , y ≠ 1
Đưa pt thứ nhất về dạng tích ta được
( x + y − 2 ) ( 2 x − y − 1 ) = x + y − 2 y − 2 x + 1 + 3 − 3 x ( x + y − 2 ) 1 y − 2 x + 1 + 3 − 3 x + y − 2 x + 1 = 0 ⇒ 1 y − 2 x + 1 + 3 − 3 x + y − 2 x + 1 > 0 ⇒ x + y − 2 = 0
Thay y= 2-x vào pt thứ 2 ta được x 2 + x − 3 = 3 x + 7 − 2 − x
⇔ x 2 + x − 2 = 3 x + 7 − 1 + 2 − 2 − x ⇔ ( x + 2 ) ( x − 1 ) = 3 x + 6 3 x + 7 + 1 + 2 + x 2 + 2 − x ⇔ ( x + 2 ) 3 3 x + 7 + 1 + 1 2 + 2 − x + 1 − x = 0
Do x ≤ 1 ⇒ 3 3 x + 7 + 1 + 1 2 + 2 − x + 1 − x > 0
Vậy x + 2 = 0 ⇔ x = − 2 ⇒ y = 4 (t/m)