tim n thuoc N de
15-1 chia het cho 3n+2
3n chia het n-1
Tim n thuoc N
a) n+5 chia het cho n
b) 3n+13 chia het cho n
c) 27-5n chia het cho n
d) 2n+3 chia het cho n-2
e) 3n+1 chia het cho 11-2n
a) vi n chia het cho n nen n+5 chia het cho n khi 5 chia het cho n
do do n thuoc U(5)={1;5}
vay n=1 hoac n=5
xin loi nhe tu tu roi minh giai tiep nhe
Tim n thuoc Z biet:
a; 7 chia het cho n-3
b; n-4 chia het cho n+2
c; 2n-1 chia het cho n+1
d; 3n+2 chia het chon n-1
a, Để 7 chia hết cho n - 3 thì n -3 \(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\) ĐKXĐ \(n\ne3\)
+, Nếu n - 3 = -1 thì n = 2
+' Nếu n - 3 = 1 thì n = 4
+, Nếu n - 3 = -7 thì n = -4 +, Nếu n - 3 = 7 thì n = 10
Vậy n \(\in\left\{2;4;-4;10\right\}\)
b,Để n -4 chia hết cho n + 2 thì n + 2 \(\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)ĐKXĐ \(x\ne-2\)
+, Nếu n + 2 = -1 thì n = -1
+, Nếu n + 2 = 1 thì n = -1
+, Nếu n + 2= 2 thì n = 0
+, Nếu n + 2 = -2 thì n = -4
+, Nếu n + 2 = 3 thì n = 1
+, Nếu n + 2 = -3 thì n = -5
+, Nếu n + 2= 6 thì n = 4
+, Nếu n + 2 = -6 thì n = -8
Vậy cx như câu a nhá
c, Để 2n-1 chia hết cho n+ 1 thì n\(\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)ĐKXĐ \(x\ne1\)
Bạn làm tương tự như 2 câu trên nhá
d,
Để 3n+ 2chia hết cho n-1 thì n\(\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)ĐKXĐ \(x\ne1\)
Rồi lm tương tự
Chúc bạn làm tốt
bai 1:Tim n thuoc Z
a)n-1 chia het cho n+5
b) 3n+2 chia het cho n-1
a)n-1 chia hết cho n+5
=>n+5-6 chia hết cho n+5
=>6 chia hết cho n+5
=>n+5 thuộc Ư(6)={-1;1;-2;2;-3;3;-6;6}
=>n thuộc {-6;-4;-7;-3;-11;1}
b) 3n+2 chia het cho n-1
=>3n-3+5 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 thuộc Ư(5)={-1;1;-5;5}
=>n thuộc{0;2;-4;6}
a)<=>(n+5)-6 chia hết n+5
=>6 chia hết n+5
=>n+5\(\in\){-1,-2,-3,-6,1,2,3,6}
=>n\(\in\){-6,-7,-8,-11,-4,-3,-2,1}
b)3(n-1)+3 chia hết n-1
=>9 chia hét n-1
=>n-1\(\in\){-1,-,3,-9,1,3,9}
=>n\(\in\){0,-2,-8,2,4,10}
1.chung minh rang:3n.(n+1)chia het cho 6(n thuoc N
2.cmr 5n.(n+1).(n+2) chia het cho 30(n thuocN)
3.tim so tu nhien n de 7.(n-1) chia het cho 4
4.tim so tu nhien n de 5.( n-2) chia het cho 3
Toi quen mat cach lam roi xin loi nhe
tim n thuoc Z
a)n^2+4chia het cho n-1
b)3n-1 chia het cho 2-n
c)n-7 chia het cho 2n+3
phần c
\(n-7⋮2n+3\)
\(2\left(n-7\right)-\left(2n+3\right)⋮2n+3\)
\(2n-4-2n-3⋮2n+3\)
\(-7⋮2n+3\)
\(\Rightarrow2n+3\inƯ\left(-7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng xét :
2n+3 | -1 | 1 | -7 | 7 |
2n | -4 | -2 | -10 | 4 |
n | -1 | 1 | -5 | 2 |
tim n thuoc N
a, n+4 chia het cho n
b, 3n+7 chia het cho n
c, 27-5n chia het cho n
d,[(n-1)tat ca mu 2 + 7]chia het cho(n-1) (voi n khac 1)
tim n thuoc Z
a) 3n+2 chia het n-1
b) 3n+24 chia het n-4
a,Ta có:3n+2 chia hết cho n-1
=>3n-3+5 chia hết cho n-1
=>3(n-1)+5 chia hết co n-1
Mà 3(n-1) chia hết cho n-1
=>5 chia hết cho n-1
=>n-1\(\in\)Ư(5)={-5,-1,1,5}
=>n\(\in\){-4,0,2,6}
b,Ta có:3n+24 chia hết cho n-4
=>3n-12+36 chia hết cho n-4
=>3(n-4)+36 chia hết cho n-4
Mà 3(n-4) chia hết cho n-4
=>36 chia hết cho n-4
=>n-4\(\in\)Ư(36)={-36,-18,-12,-9,-6,-4,-3,-2,-1,1,2,3,4,6,9,12,18,36}
=>n\(\in\){-32,-14,-8,-5,-2,0,1,2,3,5,6,7,8,10,13,16,22,40}
a) Ta có : 3n + 2 chia hết cho n - 1
=> 3n - 1 + 3 chia hết cho n - 1
=> 3(n-1) + 3 chia hết cho n - 1
=> 3 chia hết cho n - 1
=> n - 1 \(\in\) Ư(3) = {+1;+3}
Với n - 1 = 1 => n = 2
Với n - 1 = -1 => n = 0
Với n - 1 = 3 => n = 4
Với n - 1 = -3 => n = -2
Vậy n \(\in\) {2;0;4;-2}
b) Ta có : 3n + 24 chia hết cho n - 4
=> 3n - 4 + 28 chia hết cho n - 4
... Tương tự câu a
tim n thuoc Z
[11-7n] chia het n
[3n-1]chia het [n-1]
b)<=>3(n-1)+2 chia hết n-1
=>6 chia hết n-1
=>n-1\(\in\){-1,-2,-3,-6,1,2,3,6}
=>n\(\in\){0,-1,-2,-5,2,3,4,7}
tim n thuoc N de 3n + 2 chia het cho n - 1
\(\left(3n+2\right)⋮\left(n-1\right)\)
\(\Rightarrow\left(3n-3+5\right)⋮\left(n-1\right)\)
\(\Rightarrow5⋮\left(n-1\right)\)
\(\Rightarrow n-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow n\in\left\{-4;0;2;6\right\}\)
n-1 chia hết cho n-1 => 3n-3 chia hết cho n-1
3n+2 chia hết cho n-1
=>(3n+2)-(3n-3) chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 thuộc -5;-1;1;5
TH1: n=-5 => n=-4(loại)
TH2: n=-1 => n=0(TM)
TH3: n=1 => n=2(TM)
TH4: n=5 => n=6(TM)
ta co : 3n + 2 = 3(n-1)+5
Vi 3(n-1)+5 chia het cho n-1
De 3n + 2 chia het cho n-1 suy ra 3(n-1)+ 5 chia het cho n-1
suy ra : 5 chia het cho n-1
suy ra n-1 thuoc U(5)={1;5}
n-1=1
n=1+1=2
n-1 =5
n=5+1=6
vay n = 2 hoac n = 6 thi 3n+2 chia het cho n-1