Những câu hỏi liên quan
H24
Xem chi tiết
H24
22 tháng 11 2017 lúc 20:10

 Ta thấy nếu x lẻ => VT chẵn => z chẵn ko phải số nguyên tố 

Vậy x chỉ là số chẵn mà nguyên tố => x= 2 

Với y=2 => z= 5 thỏa đk đề bài 

Nếu y>2 => y lẻ (vì y nguyên tố) 

=> y =2k +1 
=> 2^(2k+1) +1 = 2.4^k + 1 = 2.(3p+1) + 1 = 3m 

Như vậy khi x=2 và y nguyên tố > 2 thì VT luôn chia hết cho 3 
=>z chia hết cho 3 không thỏa đk 

Vậy x=y=2; z= 5 là duy nhất 

Bình luận (0)
GT
3 tháng 11 2017 lúc 21:05

x = 2 

y = 2

z = 5

Bình luận (0)
H24
3 tháng 11 2017 lúc 21:18

bạn ơi ! Bạn please cho mình cách giải v~

Bình luận (0)
NT
Xem chi tiết
AT
24 tháng 6 2021 lúc 17:09

Vì \(x^y+1=z\Rightarrow z>x,y\Rightarrow z\) lẻ

Xét \(x\) lẻ \(\Rightarrow x^y+1\) chẵn \(\Rightarrow\) vô lý \(\Rightarrow x\) chẵn \(\Rightarrow x=2\Rightarrow2^y+1=z\)

Xét \(y=2\Rightarrow z=5\Rightarrow\) thỏa

Xét \(y>2\Rightarrow y\) lẻ \(\Rightarrow y=2k+1\Rightarrow2^{2k+1}+1=z\Rightarrow4^k.2+1=z\)

Vì 4 chia 3 dư 1 \(\Rightarrow4^k\) cũng chia 3 dư 1

\(\Rightarrow4^k.2+1⋮3\Rightarrow z=3\Rightarrow2^y=2\Rightarrow y=1\) (vô lý)

Vậy bộ (x,y,z) thỏa là (2,2,5)

 

Bình luận (0)
H24
24 tháng 6 2021 lúc 17:07

Ta có x, y nguyên tố và xy + 1 = z

=> z > 3

Mà z là số nguyên tố

=> z lẻ => xy chẵn => x = 2

Xét y = 2 => z = 5 (thỏa mãn)

Xét y > 2:

Đặt y = 2k +1 (\(k\in N\) *)

=> 22k+1 + 1 = z

=> 2.4k + 1 = z

Có \(4^k\equiv1\left(mod3\right)\) => 2.4k + 1 chia hết cho 3

=> z chia hết cho 3 (loại)

KL x = 2, y = 2, z = 5
 

Bình luận (1)
LP
Xem chi tiết
NN
Xem chi tiết
TT
Xem chi tiết
TG
Xem chi tiết
NT
13 tháng 1 2023 lúc 14:28

=>x,y là các nghiệm của pt là:

x^2+658x-1983=0

=>(x+681)(x-3)=0

=>x=3 hoặc x=-681

=>(x,y)=(3;-681) hoặc (x;y)=(-681;3)

Bình luận (0)
TT
Xem chi tiết
TT
25 tháng 10 2018 lúc 11:04

xin lỗi nha là yy chứ ko phải là yx đâu nha

Bình luận (0)
KV
25 tháng 10 2018 lúc 11:13

Chon x = y = 2p - 1 ta có : xx + yy = 2.xx = 2.( 2p - 1 2p - 1  = 2( p - 1 ). 2p-1+1

Vì 2 \(⋮\)p và p là số nguyên tố theo định lý Fecma nhỏ , suy ra :

    2p-1 \(\equiv\)1 ( mod p ) => ( p - 1 ) . 2p-1 + 1 = 0 ( mod p )

    => \(\exists k\inℕ^∗\)  sao cho ( p - 1 ) . 2p-1 + 1 = kp

Bởi thế , từ ( 1 ) ta thấy  khi chọn z = 2k thì ta có :

   xx + yy = zp , với p là số nguyên tố lẻ

Bình luận (0)
ND
Xem chi tiết
FZ
Xem chi tiết
FZ
27 tháng 7 2015 lúc 8:04

Lần này là lần thứ 3 tớ gửi câu này

Bình luận (0)