x^2-xy
X=Y
X^2=XY
X^2+X^2=XY+X^2
2X^2=XY+x^2
2X^2-2XY=XY+X^2+2XY
2(X^2-XY)=1(X^2-XY)
2=1
Đúng hay sai? vì sao?
X=Y
X^2 = XY
X^2+X^2=XY+X^2
2X^2=XY+X^2
2X^2-2XY=XY+X^2-2XY
2(X^2-XY)=1(X^2-XY)
2=1
DUNG KO VÌ SAO LẠI NHƯ VẬY
2(X^2-XY)=1(X^2-XY)
lấy đâu ra 1 vậy bạn
BẠN ĐỌC HẾT ĐỀ BÀI ĐI LÀ CMT HIỂU
Sai ở bước này nhé
2(X^2-XY)=1(X^2-XY)
2=1
Bạn rút gọn bằng cách chia cả 2 vế cho (X^2 - XY) mà muốn chia được thì X^2 - XY phải khác 0 trước đã.
Có nghĩa
\(X^2-XY\ne0\)
\(\Leftrightarrow X\left(X-Y\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}X\ne0\\X\ne Y\end{cases}}\)
Mà theo đề bài thì X = Y
Nên X^2 - XY = 0
Mà khi cái này bằng 0 thì không thể chia cho 0 bạn nhé
g)(x+3y)(x-3y+2) h)(x+2y((x-2y+3) I)(x^2-xy+y^2)(x+y) J)(x^2-xy+y^2)(x+y) K)(5x-2y)(x^2-xy-1) L)(x^2y^2-xy+y)(x-y)
g: (x+3y)(x-3y+2)
=(x+3y)(x-3y)+2(x+3y)
=x^2-9y^2+2x+6y
h: (x+2y)(x-2y+3)
=(x+2y)(x-2y)+3(x+2y)
=x^2-4y^2+3x+6y
i: (x^2-xy+y^2)(x+y)
=x^3+x^2y-x^2y-xy^2+xy^2+y^3
=x^3+y^3
j: (x+y)(x^2-xy+y^2)=x^3+y^3
k: (5x-2y)(x^2-xy-1)
=5x*x^2-5x*xy-5x-2y*x^2+2y*xy+2y
=5x^3-5x^2y-5x-2x^2y+2xy^2+2y
=5x^3-7x^2y+2xy^2-5x+2y
l: (x^2y^2-xy+y)(x-y)
=x^3y^2-x^2y^3-x^2y^2+xy^2+xy-y^2
( x^2 +x ^3 -xy^2 +3 ) + ( x^3 +xy ^2 - xy -6)
\(=x^2+x^3-xy^2+3+x^3+xy^2-xy-6\)
\(=x^3+x^2-xy-3\)
\((x^2+x^3-xy^2+3)+(x^3+xy^2-xy-6)\)
\(=\) \(x^2+x^3-xy^2+3+x^3+xy^2-xy-6\)
\(=x^2+(x^3+x^3)+\left(-xy^2-xy\right)+\left(3-6\right)-xy\)
\(=x^2+2x^3-2xy^2-3-xy\)
P=\(\frac{2}{x}-\left(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\right).\frac{x+y}{x^2+xy+y^2}\)
\(a,ĐKXĐ:x\ne-;y\ne0\)
\(P=\frac{2}{x}-\left(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)
\(P=\frac{2}{x}-\left(\frac{x^2}{x\left(x+y\right)}+\frac{y^2-x^2}{xy}-\frac{y^2}{y\left(x+y\right)}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)
\(P=\frac{2}{x}-\left(\frac{x^2y}{xy\left(x+y\right)}+\frac{\left(x+y\right)\left(y^2-x^2\right)}{xy\left(x+y\right)}-\frac{xy^2}{xy\left(x+y\right)}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)
\(P=\frac{2}{x}-\left(\frac{x^2y+xy^2-x^3+y^3-x^2y-xy^2}{xy\left(x+y\right)}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)
\(P=\frac{2}{x}+\frac{x^3-y^3}{xy\left(x+y\right)}\cdot\frac{x+y}{x^2+xy+y^2}\)
\(P=\frac{2}{x}-\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{xy}\cdot\frac{1}{x^2+xy+y^2}\)
\(P=\frac{2}{x}-\frac{x-y}{xy}=\frac{2y-x+y}{xy}=\frac{3y-x}{xy}\)
\(b,x^2+y^2+10=2\left(x-3y\right)\)
\(\Leftrightarrow x^2+y^2+10=2x-6y\)
\(\Leftrightarrow x^2-2x+1+y^2+6y+9=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
thay vào P được : \(P=\frac{3\left(-3\right)-1}{-3\cdot1}=\frac{-10}{-3}=\frac{10}{3}\)
a, Rút gọn A
b,Tìm giá trị P, biết x,y thỏa mãn đẳng thức
x^2+y^2+10=2(x-3y)
Gọi T là tổng, H là hiệu của hai đa thức \(3{x^2}y - 2x{y^2} + xy\) và \( - 2{x^2}y + 3x{y^2} + 1\). Khi đó:
A. \(T = {x^2}y - x{y^2} + xy + 1\) và \(H = 5{x^2}y - 5x{y^2} + xy - 1\).
B. \(T = {x^2}y + x{y^2} + xy + 1\) và \(H = 5{x^2}y - 5x{y^2} + xy - 1\)
C. \(T = {x^2}y - x{y^2} + xy + 1\) và \(H = 5{x^2}y - 5x{y^2} - xy - 1\)
D. \(T = {x^2}y - x{y^2} + xy + 1\) và \(H = 5{x^2}y + 5x{y^2} + xy - 1\)
\(\begin{array}{l}T + H = 3{x^2}y - 2x{y^2} + xy + \left( { - 2{x^2}y + 3x{y^2} + 1} \right)\\ = 3{x^2}y - 2x{y^2} + xy - 2{x^2}y + 3x{y^2} + 1\\ = \left( {3{x^2}y - 2{x^2}y} \right) + \left( { - 2x{y^2} + 3x{y^2}} \right) + xy + 1\\ = {x^2}y + x{y^2} + xy + 1\\T - H = 3{x^2}y - 2x{y^2} + xy - \left( { - 2{x^2}y + 3x{y^2} + 1} \right)\\ = 3{x^2}y - 2x{y^2} + xy + 2{x^2}y - 3x{y^2} - 1\\ = \left( {3{x^2}y + 2{x^2}y} \right) + \left( { - 2x{y^2} - 3x{y^2}} \right) + xy - 1\\ = 5{x^2}y - 5x{y^2} + xy - 1\end{array}\)
Chọn B.
Tìm số nguyên x biết
a,3x+3y-2xy=7
b,xy+2x+y+11=0
c,xy+x-y=4
d,2x.(3y-2)+(3y-2)=12
e,3x+4y-xy=15
f,xy+3x-2y=11
g,xy+12=x+y
h,xy-2x-y=-6
i,xy+4x=25+5y
ii,2xy-6y+x=9
iii,xy-x+2y=3
k,2.x^2.y-x^2-2y-2=0
l,x^2.y-x+xy=6
A = \(\frac{xy-y^2}{1+xy}-xy:\frac{x^2-xy}{1+xy}-x^2\)
rút gọn:
A = \(\frac{2}{x}-\left(\frac{x^2}{x^2+xy}-\frac{x^2-y^2}{xy}-\frac{y^2}{xy+y^2}\right)\frac{x+y}{x^2+xy+y^2}\)