(x+1).(3y+5)=26 tìm x y
Bài 1 Tìm x, y
a, x=3y và y-x=26
b,x/5 = y/7 và 2x+y=26
\(x=3y\); \(y-x=26\)
từ \(y-x=26\Rightarrow x=y-26\)
thay \(x=y-26\), ta được:
\(y-26=3y\)
\(\Rightarrow2y=-26\)
\(\Rightarrow y=-13\)mà \(x=3y\Rightarrow x=3\cdot\left(-13\right)=-39\)
vậy \(x=-39;y=-13\)
Ta có : \(\frac{x}{5}=\frac{y}{7}\Rightarrow5y=7x\Rightarrow x=\frac{5y}{7}\)
Thay \(x=\frac{5y}{7}\)vào biểu thức \(2x+y=26\);ta được:
\(\frac{2.5y}{7}+y=26\Rightarrow10y+7y=26.7\Rightarrow17y=182\Rightarrow y=\frac{182}{17}\)
Do đó : \(x=\frac{\frac{5.182}{17}}{7}=\frac{130}{17}\)
1, Tìm x hoặc y biết:
a) 2x (x-5)-x(2x+3)=26
b) (3y^2-y+1)(y-1)+y^2(4-3y)=5/2
c) 2x^2+3(x-1)(x+1)=5x(x+1)
Tìm x:
a) 2x(x-5)-x(2x+3)=26
b) \(\left(3y^2-y+1\right)\left(y-1\right)+y^2\left(4-3y\right)=\frac{5}{2}\)
c) \(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)
a. \(2x\left(x-5\right)-x\left(2x+3\right)=26\Rightarrow2x^2-10x-2x^2-3x=26\)
\(\Rightarrow-13x=26\Rightarrow x=-2\)
b. \(\left(3y^2-y+1\right)\left(y-1\right)+y^2\left(4-3y\right)=\frac{5}{2}\)
\(\Rightarrow3y^3-3y^2-y^2+y+y-1+4y^2-3y^3=\frac{5}{2}\)\(\Rightarrow2y=\frac{7}{2}\Rightarrow y=\frac{7}{4}\)
c. \(2x^2+3\left(x+1\right)\left(x-1\right)=5x^2+5x\Rightarrow5x^2-3=5x^2+5x\)
\(\Rightarrow x=-\frac{3}{5}\)
tìm x,y,z biết
2x=3y=42
và x+y+z=26
\(2x=3y=4z\\ =>\dfrac{2x}{12}=\dfrac{3y}{12}=\dfrac{4z}{12}\\ =>\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y+z}{6+4+3}=\dfrac{26}{13}=2\\ =>x=2.6=12,y=2.4=8,z=2.3=6\)
Tìm x,y:
a)3x(2x-12+7x(3y+5)2=0
b)x2+y2-2x+10y+26=0
tìm x,y,z biết x/2 = y/3 và 2x + 3y = 26
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{2x}{2.2}=\frac{3y}{3.3}=\frac{2x+3y}{4+9}=\frac{26}{13}=2\)
\(\frac{x}{2}=2\Rightarrow x=2.2=4\)
\(\frac{y}{3}=2\Rightarrow y=2.3=6\)
Vậy x=4 và y=6
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{2x}{4}=\frac{3y}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{4}=\frac{3y}{9}=\frac{2x+3y}{4+9}=\frac{26}{13}=2\)
\(\frac{x}{2}=2\Rightarrow x=4;\frac{y}{3}=2\Rightarrow y=6\)
Tìm x , y , z : 2x = 3y = 4z và x + y + z = 26
Từ 2x=3y=4z
=>\(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)
=>\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Theo TCDTSBN:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{6+4+3}=\frac{26}{13}=2\)
Vì x/6=2=>x=12
y/4=2=>y=8
z/3=2=>z=6
Vậy.......................
giải thích thêm:
Vì BCNN(2;3;4)=12 nên 2x/12=.....
Tìm n;x;y
1: n chia hết cho 21 và n+1 chia hết cho 165
2: 5x-xy=26-3y
3: 3x+xy-4x=3
4: y2-5y+2x=xy-6
5: y2+3x-xy=6y-4
6: xy-y2=3y-x-5
7: (2x+5y+1).(2|x|+y+x2+x)=105
Tìm x,y,z biết :
3x = y; \(\frac{y}{4}=\frac{z}{5}\); 2x - 3y + z = 26
Ta có
\(3x=y;\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{3}=\frac{x}{1};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{2x}{4}=\frac{3y}{36}=\frac{x}{15}\)
Aps dụng tính chất DTSBN ta có
\(\frac{2x}{4}=\frac{3y}{36}=\frac{x}{15}=\frac{2x-3y+z}{4-36+15}=\frac{26}{-17}\)
\(\hept{\begin{cases}\frac{x}{4}=-\frac{26}{17}\\\frac{y}{12}=-\frac{26}{17}\\\frac{z}{15}=-\frac{26}{17}\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{104}{17}\\y=-\frac{312}{17}\\z=-\frac{390}{17}\end{cases}}}\)
Bài làm
Vì \(3x=y\Rightarrow x=\frac{y}{3}=\frac{x}{4}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
=> \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{2x}{8}=\frac{3y}{36}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{8}=\frac{3y}{36}=\frac{z}{15}\Rightarrow\frac{2x-3y+z}{8-36+18}=\frac{26}{-13}=-2\)
Do đó: \(\hept{\begin{cases}\frac{x}{4}=-2\\\frac{y}{12}=-2\\\frac{z}{15}=-2\end{cases}\Rightarrow\hept{\begin{cases}x=-8\\y=-24\\z=-30\end{cases}}}\)
Vậy x = -8, y = -24, z = -30
# Học tốt #