Những câu hỏi liên quan
TN
Xem chi tiết
CA
24 tháng 2 2021 lúc 21:55

mình thua

Bình luận (0)
 Khách vãng lai đã xóa
TH
18 tháng 4 2021 lúc 14:55

bo tay

Bình luận (0)
 Khách vãng lai đã xóa
LK
Xem chi tiết
NT
21 tháng 1 2024 lúc 21:37

a: Để A là phân số thì \(2n+4\ne0\)

=>\(2n\ne-4\)

=>\(n\ne-2\)

b: Thay n=0 vào A, ta được:

\(A=\dfrac{3\cdot0-2}{2\cdot0+4}=\dfrac{-2}{4}=-\dfrac{1}{2}\)

Thay n=-1 vào A, ta được:

\(A=\dfrac{3\cdot\left(-1\right)-2}{2\cdot\left(-1\right)+4}=\dfrac{-5}{-2+4}=\dfrac{-5}{2}\)

Thay n=2 vào A, ta được:

\(A=\dfrac{3\cdot2-2}{2\cdot2+4}=\dfrac{4}{8}=\dfrac{1}{2}\)

c: Để A  nguyên thì \(3n-2⋮2n+4\)

=>\(6n-4⋮2n+4\)

=>\(6n+12-16⋮2n+4\)

=>\(-16⋮2n+4\)

=>\(2n+4\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)

=>\(2n\in\left\{-3;-5;-2;-6;0;-8;4;-12;12;-20\right\}\)

=>\(n\in\left\{-\dfrac{3}{2};-\dfrac{5}{2};-1;-3;0;-4;2;-6;6;-10\right\}\)

Bình luận (0)
PB
Xem chi tiết
JN
Xem chi tiết
PN
8 tháng 5 2016 lúc 16:03

a)Ta có ; để A thuộc N <=> (2n+5) chia hết cho (3n+1)

<=> 3(2n+5) chia hết cho (3n+1)

<=>(6n+15) chia hết cho (3n+1)

<=> (6n + 2 +13) chia hết cho (3n+1)

<=> 13 chia hết cho (3n+1)

=> (3n+1) thuộc Ư(13)

Vì n thuộc N

=> (3n+1) = 1,13

=> n = 0 hoặc 4

b)Trong phần này ta sẽ áp dung 1 tính chất sau:

a/b < (a+m)/(b+m)      với a<b

Ta thấy :

x/(x+y)  >  x/(x+y+z)

y/(y+z) > y/(x+y+z)

z/(z+x) > z/(x+y+z)

=> A > x/(x+Y+z) + y/(x+y+z) + z/(x+y+z)

=> A>1

Ta thấy :

x/x+y < (x+z)/(x+y+z)

y/y+z < (y+x)/(x+y+z)

z/z+x < (z+y)/(x+y+z)

=> A < (x+z)/(x+y+z) +(y+x)/(x+y+z) +(z+y)/(x+y+z)

=>A< 2(x+y+z)/(x+y+z)

=> A<2

=>1<A<2

=> A ko phải là số nguyên(đpcm)

Bình luận (0)
DV
Xem chi tiết
NT
4 tháng 8 2021 lúc 15:57

a, bạn sửa lại đề nhé 

b, \(C=\frac{2n+1}{4n+6}=\frac{4n+4}{4n+6}=\frac{4n+6-2}{4n+6}=1-\frac{2}{4n+6}=1-\frac{1}{2n+3}\)

\(\Rightarrow2n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

2n + 31-1
2n-2-4
n-1-2 

\(D=\frac{2n+1}{n-3}=\frac{2\left(n+\frac{1}{2}\right)}{n-3}=\frac{2\left(n-3+\frac{7}{2}\right)}{n-3}\)

\(=\frac{2\left(n-3\right)+7}{n-3}=2+\frac{7}{n-3}\Rightarrow n-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

n - 31-17-7
n4210-4
Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
NQ
Xem chi tiết
PA
10 tháng 5 2022 lúc 20:34

2n+33n−1∈Z2n+33n−1∈Z

<=> 2n + 3    chia hết cho    3n - 1

<=> 6n + 9    chia hết cho     3n - 1

<=> (6n - 2) + 11    chia hết cho    3n - 1

<=>  2(3n - 1) + 11    chia hết cho    3n - 1

<=> 11    chia hết cho 3n - 1

<=> 3n - 1 thuộc Ư(11) = {±1;±11±1;±11}

Thay từng giá trị vào 3n - 1 để tìm n 

Rồi xét giá trị của n có nguyên hay không 

Nếu không thì vứt

Nếu là số nguyên thì nhận

Bình luận (0)
NT
10 tháng 5 2022 lúc 20:35

\(\dfrac{6n+9}{3n-1}=\dfrac{2\left(3n-1\right)+11}{3n-1}=2+\dfrac{11}{3n-1}\)

\(\Rightarrow3n-1\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

 

3n-1 1 -1 11 -11
n loại 0 4 loại

 

 

Bình luận (0)
NQ
10 tháng 5 2022 lúc 20:36

úi mk nhìn chả hỉu gì cả vì mk ko giỏi môn này cho lắm

cảm ơn bn đã giúp mk nha

 

Bình luận (0)
HT
Xem chi tiết

Câu 1:

a) \(\dfrac{n-5}{n-3}\) 

Để \(\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\) 

\(n-5⋮n-3\) 

\(\Rightarrow n-3-2⋮n-3\) 

\(\Rightarrow2⋮n-3\) 

\(\Rightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\) 

Ta có bảng giá trị:

n-1-2-112
n-1023

Vậy \(n\in\left\{-1;0;2;3\right\}\) 

b) \(\dfrac{2n+1}{n+1}\) 

Để \(\dfrac{2n+1}{n+1}\) là số nguyên thì \(2n+1⋮n+1\)  

\(2n+1⋮n+1\) 

\(\Rightarrow2n+2-1⋮n+1\) 

\(\Rightarrow1⋮n+1\) 

\(\Rightarrow n-1\inƯ\left(1\right)=\left\{\pm1\right\}\) 

Ta có bảng giá trị:

n-1-11
n02

Vậy \(n\in\left\{0;2\right\}\) 

Bình luận (0)

Câu 2:

a) \(\dfrac{n+7}{n+6}\) 

Gọi \(ƯCLN\left(n+7;n+6\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}n+7⋮d\\n+6⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(n+7\right)-\left(n+6\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{n+7}{n+6}\) là p/s tối giản

b) \(\dfrac{3n+2}{n+1}\) 

Gọi \(ƯCLN\left(3n+2;n+1\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\)    \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3.\left(n+1\right)⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{3n+2}{n+1}\) là p/s tối giản

Bình luận (0)
DA
Xem chi tiết