Tìm x,y,z
\(\frac{x}{3}=\frac{y}{2}=\frac{z}{6}\)và \(5x^2+y^2-z^2=117\)
Tìm x,y,z biết
\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x+3y-z=186
\(b.\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
\(c.\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)và 5x+y-2z=28
\(d.3x=2y;5x=5z,x-y+z=32\)
\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=186\)
Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}\times\frac{1}{5}=\frac{y}{4}\times\frac{1}{5}=\frac{x}{15}=\frac{y}{20}\left(1\right)\)
Từ \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}\times\frac{1}{4}=\frac{z}{7}\times\frac{1}{4}=\frac{y}{20}=\frac{z}{28}\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\)
\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\)
Lại có : \(2x+3y-z=186\)
Thay vào ta có :
\(2.15k+3.20k-28k=186\)
\(30k+60k-28k=186\)
\(62k=186\)
\(k=3\)
Thay vào ta được :
\(\Rightarrow\hept{\begin{cases}x=15.3=45\\y=20.3=60\\z=28.3=84\end{cases}}\)
Vậy .....
1) Tìm x, biết:
a) x:2=y:5 và x+y=21
b) x2=y2𝑥2=𝑦2và x.y=54
c) x:7=y:5 và y-x=12
2) Tím các số x, y, z, biết:
a) x10=y6=z21𝑥10=𝑦6=𝑧21và 5x+y-2z=28
b) x3=y4𝑥3=𝑦4; y5=z7𝑦5=𝑧7và 2x+3y-z=124
c) 3x=2y; 7y=5z và x-y+z=32
d) 2x=3x=5z và x+y-z=95
Để giải các bài toán này:
1a) \( \frac{x}{2} = \frac{y}{5} \) và \( x + y = 21 \)
Từ phương trình thứ nhất, ta có \( x = \frac{2y}{5} \). Thay vào phương trình thứ hai:
\[ \frac{2y}{5} + y = 21 \]
\[ \frac{7y}{5} = 21 \]
\[ 7y = 105 \]
\[ y = 15 \]
Thay \( y = 15 \) vào \( x + y = 21 \):
\[ x + 15 = 21 \]
\[ x = 6 \]
Vậy, \( x = 6 \).
1b) \( \frac{x^2}{2^2} = \frac{y^2}{2^2} \) và \( x \cdot y = 54 \)
Từ phương trình thứ nhất:
\[ x^2 = y^2 \]
Đặt \( x = y \) ta có:
\[ x^2 = 54 \]
\[ x = \sqrt{54} \]
\[ x = 3\sqrt{6} \]
Vậy, \( x = 3\sqrt{6} \).
1c) \( \frac{x}{7} = \frac{y}{5} \) và \( y - x = 12 \)
Từ phương trình thứ nhất, ta có \( x = \frac{7y}{5} \). Thay vào phương trình thứ hai:
\[ y - \frac{7y}{5} = 12 \]
\[ \frac{5y}{5} - \frac{7y}{5} = 12 \]
\[ \frac{-2y}{5} = 12 \]
\[ -2y = 60 \]
\[ y = -30 \]
Thay \( y = -30 \) vào \( y - x = 12 \):
\[ -30 - x = 12 \]
\[ x = -42 \]
Vậy, \( x = -42 \).
2a) \( \frac{x}{10} = \frac{y}{6} = \frac{z}{21} \) và \( 5x + y - 2z = 28 \)
Đặt \( k = \frac{x}{10} = \frac{y}{6} = \frac{z}{21} \), ta có:
\[ x = 10k, \quad y = 6k, \quad z = 21k \]
Thay vào phương trình \( 5x + y - 2z = 28 \):
\[ 5(10k) + 6k - 2(21k) = 28 \]
\[ 50k + 6k - 42k = 28 \]
\[ 14k = 28 \]
\[ k = 2 \]
\[ x = 10(2) = 20, \quad y = 6(2) = 12, \quad z = 21(2) = 42 \]
Vậy, \( x = 20, y = 12, z = 42 \).
2b) \( \frac{x}{3} = \frac{y}{4} \), \( \frac{y}{5} = \frac{z}{7} \), và \( 2x + 3y - z = 124 \)
Đặt \( k = \frac{x}{3} = \frac{y}{4} \), ta có:
\[ x = 3k, \quad y = 4k \]
Thay vào \( \frac{y}{5} = \frac{z}{7} \):
\[ \frac{4k}{5} = \frac{z}{7} \]
\[ z = \frac{28}{5}k \]
Thay \( x, y, z \) vào \( 2x + 3y - z = 124 \):
\[ 2(3k) + 3(4k) - \frac{28}{5}k = 124 \]
\[ 6k + 12k - \frac{28}{5}k = 124 \]
\[ \frac{30k + 60k - 28k}{5} = 124 \]
\[ \frac{62k}{5} = 124 \]
\[ 62k = 620 \]
\[ k = 10 \]
\[ x = 3(10) = 30, \quad y = 4(10) = 40, \quad z = \frac{28}{5}(10) = 56 \]
Vậy, \( x = 30, y = 40, z = 56 \).
2c) \( 3x = 2y \), \( 7y = 5z \), và \( x - y + z = 32 \)
Từ \( 3x = 2y \) và \( 7y = 5z \):
\[ x = \frac{2}{3}y, \quad z = \frac{7}{5}y \]
Thay vào \( x - y + z = 32 \):
\[ \frac{2}{3}y - y + \frac{7}{5}y = 32 \]
\[ \frac{10y - 15y + 21y}{15} = 32 \]
\[ \frac{16y}{15} = 32 \]
\[ y = 30 \]
\[ x = \frac{2}{3}(30) = 20, \quad z = \frac{7}{5}(30) = 42 \]
Vậy, \( x = 20, y = 30, z = 42 \).
2d) \( 2x = 3x = 5z \) và \( x + y - z = 95 \)
Từ \( 2x = 3x = 5z \), ta có:
\[ x = \frac{2}{3}x, \quad x = \frac{5}{3}z \]
Vậy, \( x = \frac{5}{3}z \).
Thay vào \( x + y - z = 95 \):
\[ \frac{5}{3}z + y - z = 95 \]
\[ \frac{2}{3}z + y = 95 \]
\[ y = 95 - \frac{2}{3}z \]
Thay \( x \) và \( y \) vào \( 2x = 3x = 5z \):
\[ 2(\frac{5}{3}z) = 3(\frac{5}{3}z) = 5z \]
\[ \frac{10}{3}z = 5z \]
\[ \frac{10}{3} = 5 \]
\[ \text{False} \]
Không có giải pháp thỏ
Tìm x,y,z biết:
a) \(\frac{x-3}{x+5}=\frac{5}{7}\)
b)\(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
c)\(\frac{x}{y}=\frac{3}{4};\frac{y}{z}=\frac{5}{7}\)
d)\(\frac{x}{2}=\frac{y}{5}=\frac{z}{6}\)và 3x + 2y - z = 50
e)\(\frac{x}{3}=\frac{y}{2}=\frac{z}{6}\)và 5.x2 y2 - z2 = 117
f) \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)và 5z - 3x - 4y = 50
g) \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
h)\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
Các bạn chỉ cần trả lời 4 câu bất kì thôi nhé
Mình chỉ cần các bạn trả lời 4 câu nhanh nhất mình sẽ k.
a)x-3/x+5=5/7 suy ra 7.(x-3) = 5(x+5)
Tương đương : 7x - 21 = 5x + 25
7x - 5x = 25 + 21 = 46
2x = 46 suy ra : x = 46/2 = 23
Vậy x = 23
bài 1: tìm các số x,y,z biết:
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)và 5x+y-2z =28
b)3x=2y; 7y=5z ; x-y+z+32
c) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và 2x+3y-z=50
d) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz=810
a/
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)\(=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)\(\Rightarrow x=20;y=12;z=42\)
b/\(3x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{3};7y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+20}=2\)
\(\Rightarrow x=20;y=30;z=42\)
d) Đặt \(\frac{x}{2}=k\Rightarrow x=2k\); \(\frac{y}{3}=k\Rightarrow y=3k\); \(\frac{z}{5}=k\Rightarrow z=5k\)
Thay x=2k, y=3k, z=5k vào xyz=810 ta được:
\(2k.3k.5k=810\)
\(30k^3=810\)
\(k^3=\frac{810}{30}=27\)
\(\Rightarrow k=3\)
Do đó: x = 2k \(\Rightarrow\)x = 2.3=6
y = 3k\(\Rightarrow\)y = 3.3=9
z = 5k \(\Rightarrow\)z = 5.3=15
Vậy x=6; y=9; z=15
Tìm x, y, z biết :
a. 5x = 8y = 20z và x - y -z = 3
b. \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)Và -x + y + z = 120
c.\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\)Và x X y X z = 20
d. x . y = -30 ; y . z = 42 và z - x = -12
a, 5x = 8y => \(\frac{x}{8}=\frac{y}{5}\)
8y = 20z => 2y = 5z => \(\frac{y}{5}=\frac{z}{2}\)
=> \(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}=\frac{x-y-z}{8-5-2}=\frac{3}{1}=3\)
=> x = 24,y = 15,z = 6
b, \(\frac{6}{11}x=\frac{9}{2}y\)=> \(\frac{12x}{22}=\frac{99y}{22}\)=> 12x = 99y => 4x = 33y => \(\frac{x}{33}=\frac{y}{4}\)
\(\frac{9}{2}y=\frac{18}{5}z\)=> \(\frac{45y}{10}=\frac{36z}{10}\)=> 45y = 36z => 5y = 4z => \(\frac{y}{4}=\frac{z}{5}\)
=> \(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{120}{-24}=-5\)
=> x = -165 , y = -20 , z = -25
c, Đặt : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)=> x = 12k , y = 9k , z = 5k
=> xyz = 12k . 9k . 5k
=> xyz = 540k3
=> 540k3 =20
=> k3 = 20/540
=> k3 = 1/27
=> k = 1/3
Do đó : x= 4 , y = 3 , z = 5/3
Tìm các số x,y,z biết:
a, 5x=8y=20z và x-y-z=3
b, \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\) và -x+y+z=-120
5x = 8y = 20z suy ra 5x/40 = 8y/40 = 20z/40 suy ra x/8 = y/5 = z/2 . ap dung tinh chat day ty so bang nhau ta co x/8 =y/5 =z/2 = x-y-z/8-5-2 =3 /1 =3 . tu x/8 =3 suy ra x =24 . tu y /6=3 suy ra y=18 . tu z/2 =3 suy ra z =6 . vay x = 24 , y = 18 , z = 6
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
\(\Rightarrow x=165;y=20;z=25\)
Tìm x;y;z
a} \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\) và x - 3y + 4z = 62
b} 5x = 8y = 20z và x - y - z = 3
c} \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\) và -x + y + z = -120
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\)\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}\)
Áp dụng tính chất của dãy tủ số bằng nhau ta có:
\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(\frac{x}{4}=2=>x=8\)
\(\frac{3y}{9}=2=>y=6\)
\(\frac{4z}{36}=2=>z=18\)
Ta có: a) \(\hept{\begin{cases}\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\\x-3y+4x=62\end{cases}\Rightarrow\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2}\)
\(\Rightarrow\hept{\begin{cases}x=2.4=8\\y=2.3=6\\z=2.9=18\end{cases}}\)
a) Ta có: x/4=y/3=z/9=x-3y+4z/4-9+36=62/31=2
x/4=2 => x=2.4=8
y/3=2 => y=2.3=6
z/9=2 => z=2.9=18
Vậy x=8; y=6; z=18.
Tìm x , y , z biết:
a) x/10 = y/6 = z/21 và 5x + y - 2z = 28
b) 3x = 2y ; 7y = 5z và x - y + z = 32
c) x/3 = y/4 ; y/3 = z/5 và 2x - 3y + z = 6
d) 2x/3 = 3y/4 = 4z/5 và x + y + z = 49
e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}và2x+3y-z=50\)
a)ta có: x/10 = y/6 = z/21=>5x/50=y/6=2z/42
áp dụng tính chất của dãy tỉ số = nhau ta có:
5x/50=y/6=2z/42=5x+y-2z/50+6-42=28/14=2
suy ra: 5x/50=2=>5x=100=>x=20
y/6=2=>y=12
2z/42=2=>84=>z=42
b)3x = 2y ; 7y = 5z
=>x/2=y/3;y/5=z/7
=>x/10=y/15;y/15=z/21
=>x/10=y/15=z/21
áp dụng tính chất của dãy tỉ số = nhau ta có:
x/10=y/15=z/21=x-y+z/10-15+21=32/16=2
suy ra :
x/10=2=>x=20
y/15=2=>y=30
z/21=2=>z=42
c) x/3 = y/4 ; y/3 = z/5
=>x/9=y/12;y/12=z/20
=>x/9=y/12=z/20
=>2x/18=3y/36=z/20
áp dụng tính chất của dãy tỉ số = nhau ta có:
2x/18=3y/36=z/20=2x-3y+z/18-36+20=6/2=3
suy ra
2x/18=3=>2x=54=>x=27
3y/36=3=>3y=108=>y=36
z/20=3=>z=60
d)2x/3 = 3y/4 = 4z/5
=>12x/18=12y/16=12z/15
áp dụng tính chất của dãy tỉ số = nhau ta có:
12x/18=12y/16=12z/15=12x+12y+12z/18+16+15=12(x+y+z)/49=49/49=12
suy ra
12x/18=12=>12x=216=>x=18
12y/16=12=>12y=192=>y=16
12z/15=12=>12z=180=>z=15
d)đặt x-1/2=y-2/3=z-3/4=k
=>x=2k+1
y=3k+2
z=4k+3
thay x=2k+1;y=3k+2;z=4k+3 vào 2x+3x-z=50 ta được:
2(2k+1)+3(3k+2)-(4k+3)=50
4k+2+9k+6-4k-3=50
9k+5=50
9k=45
k=5
=>x=2k+1=2.5+1=11
y=3k+2=3.5+2=17
z=4k+3=4.5+3=23
đặt x-1/2=y-2/3=z-3/4=k
=> x=2K+1, y=3k+2, z=4k+3
=>2x+3y-z=4K+2+9k+6-4k-3=9K+5=50
=>K=5
=>x=11, y=17, z=23
chúc học tốt nhé!
bạn làm đúng rồi mình cũng giống bạn trieu dang
Tìm x , y , z biết:
a) x/10 = y/6 = z/21 và 5x = y - 2z = 28
b) 3x = 2y ; 7y = 5z và x - y + z = 32
c) x/3 = y/4 ; y/3 = z/5 và 2x - 3y + z = 6
d) 2x/3 = 3y/4 = 4z/5 và x + y + z = 49
e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}và2x+3y-z=50\)
b) 3x = 2y
=> x/2 = y/3 (1)
7y = 5z
=> y/5 = z/7 (2)
Từ (1) và (2), có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x/10 = 2 => x = 2 x 10 =20
y/15 = 2 => y = 2 x 15 = 30
z/21 = 2 => z = 2 x 21 = 42
Tìm x,y,z biết :
a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)và x-3y+4z=62
b) \(\frac{x}{y}=\frac{9}{7};\frac{y}{7}=\frac{7}{3}\)và x-y+z=-15
c) 5x=8y=20z và x-y-z=3
d) \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)và x+y+z=-120
e) \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\)x.y.z=20
f) \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\) và \(x^2+y^2-z^2=585\)
a) Aps dụng tính chất các dãy tỉ số bằng nhau, ta có:
x/4 =y/3 = z/9 = 3y/9 = 4z/36 = (x-3y+4z)/(4-9+36)= 62/31 = 2
=> x=2.4=8
y=2.3=6
z=2.9=18
a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)
ADTCCDTSBN, ta có:
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(\Rightarrow x=2.4=8\)
\(y=2.3=6\)
\(z=2.9=18\)
b) Đề có nhầm lẫn j k nhỉ =.=
c) \(5x=8y=20z\Leftrightarrow\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}\)
ADTCCDTSBN, ta có:
\(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}=\frac{x+y+z}{\frac{1}{5}+\frac{1}{8}+\frac{1}{20}}=-\frac{15}{\frac{3}{8}}=-40\)
\(\Rightarrow x=-40:5=-8\)
\(y=-40:8=-5\)
\(z=-40:20=-2\)
b) Có vẻ là sai đề bài thì phải! Xem lại giúp mình với!
c)5x=8y=20z
=> 5x/40 = 8y/40 = 20z/40
=> x/8 = y /5 = z/2
rồi áp dụng tính chất các dãy tỉ số bằng nhau, làm tương tự như câu a!
Câu e tương tự!
Câu f bạn nhân mỗi phân số lên mũ 2 nhé!