Tìm GTNN của biểu thức
a) A= 3.I1-2xI-5
b) C= Ix\(\frac{1}{2}\)I+ (y+2)\(^2\)+11
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài1 Tìm GTLN của biểu thức
A=-x^2-10x+1
B=-4x^2-6x-5
C=-16x^2+8x-1
Bài2 Tìm GTNN của biểu thức
A=4x^2-8x+5
B=25x^2-10x-3
C=49x^2-28x+1
giúp mình với T-T
Bài 2 :
\(A=4x^2-2.2x.2+4+1\)
\(=\left(2x-2\right)^2+1\)
Thấy : \(\left(2x-2\right)^2\ge0\)
\(A=\left(2x-2\right)^2+1\ge1\)
Vậy \(MinA=1\Leftrightarrow x=1\)
\(B=\left(5x\right)^2-2.5x.1+1-4\)
\(=\left(5x-1\right)^2-4\)
Thấy : \(\left(5x-1\right)^2\ge0\)
\(\Rightarrow B=\left(5x-1\right)^2-4\ge-4\)
Vậy \(MinB=-4\Leftrightarrow x=\dfrac{1}{5}\)
\(C=\left(7x\right)^2-2.7x.2+4-5\)
\(=\left(7x-2\right)^2-5\)
Thấy : \(\left(7x-2\right)^2\ge0\)
\(\Rightarrow C=\left(7x-2\right)^2-5\ge-5\)
Vậy \(MinC=-5\Leftrightarrow x=\dfrac{2}{7}\)
\(1.\)
\(A=-x^2-10x+1=-\left(x^2+10x-1\right)\)
\(=-\left(x^2+2.5x+5^2-5^2-1\right)=-\left[\left(x+5\right)^2-26\right]\)
\(=-\left(x+5\right)^2+26\le26\) dấu "=" xảy ra<=>x=-5
\(B=-4x^2-6x-5=-4\left(x^2+\dfrac{6}{4}x+\dfrac{5}{4}\right)\)
\(=-4\left(x^2+2.\dfrac{3}{4}x+\dfrac{9}{16}+\dfrac{11}{16}\right)\)\(=-4\left[\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{6}\right]\le-\dfrac{11}{4}\)
\(C=-16x^2+8x-1=-16\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)\)
\(=-16\left(x^2-2.\dfrac{1}{4}x+\dfrac{1}{16}\right)=-16\left(x-\dfrac{1}{4}\right)^2\le0\)
dấu"=" xảy ra<=>x=1/4
Cho A=3*I1-2xI-Ix-1/2I
TÍNH A KHI x=-1/2,x=3/2
Bài 1: Tìm GTLN hoặc GTNN của biểu thức
a)A= -x2+2x+5
b)B= -x2-y2+4x+4y+2
c)C= x2+y2-2x+6y+12
\(a,-x^2+2x+5=-\left(x^2-2x-5\right)=-\left(x^2-2x+1-6\right)=-\left(x-1\right)^2+6\le6\)
dấu'=' xảy ra<=>x=1=>Max A=6
\(b,B=-x^2-y^2+4x+4y+2=-x^2+4x-4-y^2+4x-4+10\)
\(=-\left(x^2-4x+4\right)-\left(y^2-4x+4\right)+10\)
\(=-\left(x-2\right)^2-\left(y-2\right)^2+10=-\left[\left(x-2\right)^2+\left(y-2\right)^2\right]+10\le10\)
dấu"=" xảy ra<=>x=y=2=>Max B=10
\(c,C=x^2+y^2-2x+6y+12=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)
dấu'=' xảy ra<=>x=1,y=-3=>MinC=2
hộ mình với ha ha
1 tìm x
a,I2x+1/3I=1/2
b,I1-1/2xI=1/3
c,I3x+1I=1/5
d,Ix-1/2I+1=5/3
mình cảm ơn nhé
HS lớp 7 mà ko biết làm bài này người ta nói nó là thằng thiểu năng
a) |2x+1/3|=1/2
\(\Rightarrow\orbr{\begin{cases}2x+\frac{1}{3}=\frac{1}{2}\\2x+\frac{1}{3}=\frac{-1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}2x=\frac{1}{6}\\2x=\frac{-5}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-5}{12}\end{cases}}\)
b) |1-1/2x|=1/3
\(\Rightarrow\orbr{\begin{cases}1-\frac{1}{2}x=\frac{1}{3}\\1-\frac{1}{2}x=\frac{-1}{3}\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{1}{2}x=\frac{2}{3}\\\frac{1}{2}x=\frac{4}{3}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{8}{3}\end{cases}}\)
c) |3x+1|=1/5
\(\Rightarrow\orbr{\begin{cases}3x+1=\frac{1}{5}\\3x+1=\frac{-1}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}3x=\frac{-4}{5}\\3x=\frac{-6}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-4}{9}\\x=\frac{-2}{5}\end{cases}}\)
d) |x-1/2|+1=5/3
|x-1/2|=5/3-1
|x-1/2|=2/3
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=\frac{2}{3}\\x-\frac{1}{2}=\frac{-2}{3}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{6}\\x=\frac{-1}{6}\end{cases}}}\)
Tìm GTNN của biểu thức
A= x\(^2\)-6x+11
B= x\(^2\)-20x+101
C= x\(^2\)-16x+11
a: A=x^2-6x+9+2=(x-3)^2+2>=2
Dấu = xảy ra khi x=3
b: B=x^2-20x+100+1=(x-10)^2+1>=1
Dấu = xảy ra khi x=10
d: C=x^2-16x+8+3
=(x-4)^2+3>=3
Dấu = xảy ra khi x=4
Bài 1: Tìm các giá trị nhỏ nhất của các biểu thức
a)A=x^2 - 2x + 5
b)B= x^2 - x + 1
c)C=(x-1)(x+2)(x+3)(x+6)
d)D=x^2 + 5y^2 - 2xy + 4y + 3
a) Ta có: \(A=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
b) Ta có: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
c) Ta có: \(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\forall x\)
Dấu '=' xảy ra khi x(x+5)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
d) Ta có: \(x^2+5y^2-2xy+4y+3\)
\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\forall x,y\)
Dấu '=' xảy ra khi \(x=y=-\dfrac{1}{2}\)
TÌM GTNN CỦA A=5+ I1/3 -XI
B= 2- IX+2/3I
C=2.IX-2I-1
A=5+ I1/3 -XI
Ta thấy:
\(\left|\frac{1}{3}-x\right|\ge0\)
\(\Rightarrow5+\left|\frac{1}{3}-x\right|\ge5+0=5\)
\(\Rightarrow A\ge5\)
Dấu "="xảy ra khi x=\(\frac{1}{3}\)
Vậy...
B= 2- IX+2/3I
Ta thấy:
\(\left|x+\frac{2}{3}\right|\ge0\)
\(\Rightarrow2-\left|x+\frac{2}{3}\right|\ge2-0=2\)
\(\Rightarrow B\ge2\)
Dấu"="xảy ra khi \(x=-\frac{2}{3}\)
Vậy...
C=2.IX-2I-1
Ta thấy:
\(2\left|x-2\right|\ge0\)
\(\Rightarrow2\left|x-2\right|-1\ge0-1=-1\)
\(\Rightarrow C\ge-1\)
Dấu"="xảy ra khi x=2
Vậy...
A=5+ I1/3 -XI
Ta thấy:
$\left|\frac{1}{3}-x\right|\ge0$|13 −x|≥0
$\Rightarrow5+\left|\frac{1}{3}-x\right|\ge5+0=5$⇒5+|13 −x|≥5+0=5
$\Rightarrow A\ge5$⇒A≥5
Dấu "="xảy ra khi x=$\frac{1}{3}$13
Vậy...
B= 2- IX+2/3I
Ta thấy:
$\left|x+\frac{2}{3}\right|\ge0$|x+23 |≥0
$\Rightarrow2-\left|x+\frac{2}{3}\right|\ge2-0=2$⇒2−|x+23 |≥2−0=2
$\Rightarrow B\ge2$⇒B≥2
Dấu"="xảy ra khi $x=-\frac{2}{3}$x=−23
Vậy...
C=2.IX-2I-1
Ta thấy:
$2\left|x-2\right|\ge0$2|x−2|≥0
$\Rightarrow2\left|x-2\right|-1\ge0-1=-1$⇒2|x−2|−1≥0−1=−1
$\Rightarrow C\ge-1$⇒C≥−1
Dấu"="xảy ra khi x=2
Vậy...
Tìm GTLN (GTNN) của biểu thức
a) A = 7 + Ix - 4I
b) B = I2 - 3xI - \(\frac{1}{5}\)
c) C = 7 - I\(\frac{1}{2}-5x\)I
a) Ta có \(\left|x-4\right|\ge0\forall x\Rightarrow A=7+\left|x-4\right|\ge7\forall x\)
Dấu "=" xảy ra <=> x - 4 = 0
=> x = 4
Vậy Min A = 7 <=> x = 4
b) Ta có : \(\left|2-3x\right|\ge0\forall x\Rightarrow B=\left|2-3x\right|-\frac{1}{5}\ge-\frac{1}{5}\forall x\)
Dấu "=" xảy ra <=> 2 - 3x = 0
=> 3x = 2
=> x = 2/3
Vậy Min B = -1/5 <=> x = 2/3
c) Ta có \(\left|\frac{1}{2}-5x\right|\ge0\forall x\Rightarrow C=7-\left|\frac{1}{2}-5x\right|\le7\forall x\)
Dấu "=" xảy ra <=> 1/2 - 5x = 0
=> x = 1/10
Vậy Max C = 7 <=> x = 1/10
Bài 1: Tìm giá trị nhỏ nhất của các biểu thức
a ) A= x2 – 2x+5
b) B= x2 –x +1
c) C= ( x -1). ( x +2). ( x+3). ( x+6)
d) D= x2 + 5y2 – 2xy+ 4y+3
Bài 2: Tìm giá trị lớn nhất của các biểu thức sau:
a) A= -x2 – 4x – 2
b) B= -2x2 – 3x +5
c) C= ( 2- x). ( x +4)
d) D= -8x2 + 4xy - y2 +3
Bài 3 : Chứng minh rằng các giá trị của các biểu thức sau luôn dương với mọi giá trị của biến
a) A= 25x – 20x+7
b) B= 9x2 – 6xy + 2y2 +1
c) E= x2 – 2x + y2 + 4y+6
d) D= x2 – 2x +2
Giúp mình nha. Cần gấp ạ <Chi tiết nha>
Bài 3:
a) Ta có: \(A=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)
d) Ta có: \(D=x^2-2x+2\)
\(=x^2-2x+1+1\)
\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)
Bài 1:
a) Ta có: \(A=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
b) Ta có: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)