Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
MT
2 tháng 6 2019 lúc 8:25

Lời giải:  
Nhận xét:  Mọi lũy thừa trong S đều có số mũ khi chia cho 4 thì dư 1 (các lũy thừa đều có dạng n4(n – 2) + 1, n thuộc {2, 3, …, 2004}).
Theo tính chất 2, mọi lũy thừa trong S và các cơ số tương ứng đều có chữ số tận cùng giống nhau, bằng chữ số tận cùng của tổng:
(2 + 3 + … + 9) + 199.(1 + 2 + … + 9) + 1 + 2 + 3 + 4 = 200(1 + 2 + … + 9) + 9 = 9009.
Vậy chữ số tận cùng của tổng S là 9.
Từ tính chất 1 tiếp tục => tính chất 3.
Tính chất 3:  
a) Số có chữ số tận cùng là 3 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 7 ; số có chữ số tận cùng là 7 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 3. 
b) Số có chữ số tận cùng là 2 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 8 ; số có chữ số tận cùng là 8 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 2. 
c) Các số có chữ số tận cùng là 0, 1, 4, 5, 6, 9, khi nâng lên lũy thừa bậc 4n + 3 sẽ không thay đổi chữ số tận cùng. 

 

Bình luận (0)

trả lời 

số tận cùng là số 9

chúc bn 

học tốt

Bình luận (0)
.
2 tháng 6 2019 lúc 8:32

trả lời 

số tận cùng là 9

chúc học tốt!

Bình luận (0)
NH
Xem chi tiết
LC
22 tháng 8 2019 lúc 22:59

a) \(3^{2018}=3^{4.504}.3^2=...1.9=...9\)

Vậy chữ số tận cùng là 9

b) \(2^{1000}=2^{4.250}=...6\)

Vậy chữ số tận cùng là 6

Bình luận (0)
H24
23 tháng 8 2019 lúc 9:14

a, Ta có :

 \(3^{2018}=3^{2016}\cdot3^2=\left(3^4\right)^{504}\cdot9=\overline{\left(...1\right)}^{504}\cdot9=\overline{\left(...1\right)}\cdot9=\overline{\left(...9\right)}\)

Vậy chữ số tận cùng của \(3^{2018}\) là 9

Bình luận (0)
H24
23 tháng 8 2019 lúc 9:16

b, Ta có : 

\(2^{1000}=\left(2^4\right)^{250}=\overline{\left(...6\right)}^{250}=\overline{\left(...6\right)}\)

Vậy chữ số tận cùng của \(2^{1000}\) là 6

Bình luận (0)
NH
Xem chi tiết
TG
2 tháng 10 2018 lúc 17:53

\(2^{31}\cdot5=2^{30}\cdot2\cdot5\)

\(=2^{30}\cdot10\)tận cùng bằng chữ số 0.

+ Tương tự \(2^{2018}\cdot5^2\)tận cùng bằng chữ số 0

+ Các số có tận cùng là 0 , 1 , 5 , 6 nâng lên lũy thừa bậc mấy cũng tận cùng là 0 , 1 , 5 , 6.

\(2^{2018}=2^{2016}\cdot4\)\(=\left(2^4\right)^{504}\cdot4\)

\(=16^{504}\cdot4\)\(=\left(...6\right)\cdot4=\left(...4\right)\)\(16^{504}\)tận cùng là 6 )

Vậy \(2^{2018}\)tận cùng là 4

Bình luận (0)
NH
Xem chi tiết
YS
Xem chi tiết
H24
2 tháng 9 2018 lúc 8:51

bạn ra đề khó quá

Bình luận (0)
VN
Xem chi tiết
H24
23 tháng 4 2020 lúc 15:38

Ta thấy: 8^2=(...4)

              18^2=(...4)

              2018^2=(...4)

Suy ra: A=(...4)+(...4)+......+(...4)

Ta thấy từ 8 đến 2018 có 202 số

A=(...4).202=(...8)

    Vậy chữ số tận cùng là 8

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
NT
5 tháng 9 2023 lúc 20:36

1) \(S=2.2.2..2\left(2023.số.2\right)\)

\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)

2) \(S=3.13.23...2023\)

Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)

\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)

\(\Rightarrow S=\overline{.....7}\)

3) \(S=4.4.4...4\left(2023.số.4\right)\)

\(\Rightarrow S=4^{2023}=\overline{.....4}\)

4) \(S=7.17.27.....2017\)

Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)

\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)

\(\Rightarrow S=\overline{.....9}\)

Bình luận (0)
NA
Xem chi tiết
NH

Bài 1:

S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)

Nhóm 4 thừa số 2 vào một nhóm thì vì:

2023 : 4 = 505 dư 3 

Vậy

S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)

S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8

S = \(\overline{..6}\) x 8

S = \(\overline{..8}\)

                

       

Bình luận (0)
NH

             Bài 2:

S = 3 x 13 x 23 x...x 2023

Xét dãy số: 3; 13; 23;..;2023

Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10

Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)

 Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.

  Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)

  Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)

  A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)

   A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27

   A = \(\overline{..7}\)

   

 

 

 

Bình luận (0)
NH

            Bài 3:

A =4 x 4 x 4 x...x 4(2023 chữ số 4)

vì 2023 : 2 =  1011 dư 1

A = (4 x 4) x (4 x 4) x...x(4 x 4) x 4 có 1011 nhóm (4 x 4)

A = \(\overline{..6}\) x \(\overline{..6}\) x \(\overline{..6}\)  x 4

A = \(\overline{...6}\) x 4

A = \(\overline{...4}\) 

 

 

Bình luận (0)
Xem chi tiết