Tìm x,y thuộc Q sao cho: a)x-y=2(x+y)=x:y b)x+y=xy=x:y
Tìm x,y thuộc Q sao cho x-y=xy=x:y
Tìm x, y thuộc Q sao cho: x -y = xy = x:y
Giải:
Ta có: \(x-y=xy\)
\(\Rightarrow x=xy+y\)
\(\Rightarrow x=\left(x+1\right)y\)
Mà \(x-y=x:y\)
\(\Rightarrow x+1=x:y\)
Ta có: \(x:y=x-y\)
\(\Rightarrow x+1=x-y\)
\(\Rightarrow y=-1\)
\(x-y=xy\)
\(\Rightarrow x-\left(-1\right)=x\left(-1\right)\)
\(\Rightarrow x+1=-x\)
\(\Rightarrow x+x=-1\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=\frac{-1}{2}\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(-1;\frac{-1}{2}\right)\)
\(\Rightarrow y=-1\)
Ta có:
x - y = xy => x = xy + y = y.(x + 1) (1)
=> x : y = x + 1 = x - y (theo đề bài)
=> y = -1
Thay y = -1 vào (1) ta có: x = -1(x + 1) = -x - 1
=> x + x = -1 = 2x
=> \(x=\frac{-1}{2}\)
Vậy \(x=\frac{-1}{2};y=-1\)
Tìm số hữu tỉ x,y sao cho:
a/ x-y=2(x+y)=x:y
b/ x+y=xy=x:y
a) Ta có: x - y = 2( x + y )
=> x - y = 2x + 2y
=> x - 2x = 2y + y
=> -x = 3y
=> x : y = -1/3
Mà x - y = 2( x + y) = x : y
=> x - y = 2( x + y) = x : y = -1/3
=> x + y = -1/3 : 2 = -1/6
=> x = ( -1/6 - 1/3 ) : 2 = -1/4
=> y = -1/6 + 1/4 = 1/12
Vậy x = -1/4; y = 1/12
Tìm x, y thuộc Q sao cho: x-y=xy=x:y (y khác 0)
Có: x+y=xy <=> x+y-xy=0 <=> x(1-y) -1+y +1=0 <=> (x-1)(1-y)= -1
Nếu x,y không nguyên thì có vô số nghiệm cứ mỗi x thay vào sẽ có 1 y
Nếu x,y nguyên thì giải như sau
Từ (x-1)(1-y)= -1
Suy ra x-1, 1-y là các ước nguyên của -1
Suy ra có các trường hợp sau
x-1=1 <=> x=2
1-y=-1<=> y=2
và
x-1= -1 <=> x=0
1-y=1 <=> y=0
Vậy có 2 nghiệm là (x,y) = (2,2) và (0,0)
bạn Nghĩa nè. trường hợp y=0 loại nha
xy=x:y=>y.y=x:x=>y2=1
=>y=1 hoặc y=-1
*)y=1
=>x+1=x
=>0=1
*)y=-1
=>x-1=-x
=>2x=1
=>x=1/2
Vậy x=1/2 y=-1
Tìm hai số hữu tỉ x và y sao cho :
a) x+y =xy=x:y ( y khác 0)
b) x-y=xy=x:y( y khác 0)
Tìm x, y, z \(\in\)Q sao cho:
a,x-y=xy=x:y(y\(\ne\)0)
b,x(x+y+z)=-5
y(x+y+z)=9
z(x+y+z)=-5
c, x-y=2(x+y)=x:y
a)x-y = xy nên x=y(x+1)\(\Rightarrow\) x:y = x+1
Mà x:y=x-y nên x-y=x+1\(\Rightarrow\)y=-1
y=-1 thì x+1=x(-1)\(\Rightarrow\) 2x=1\(\Rightarrow\)x=\(\dfrac{1}{2}\)
c)x-y=2(x+y) thì -x=3y\(\Rightarrow\)x:y=-3
hay x-y=-3 (1)
2(x+y) =-3
\(\Rightarrow\) x+y=\(\dfrac{-3}{2}\)(2)
(1)và (2) suy ra y=\(\dfrac{-9}{4}\), x= \(\dfrac{-21}{4}\)
Tìm số hữu tỉ x;y biết:
a) x+y=xy=x-y=x:y (y khác 0)
b)2(x+y)=x-y=x:y (y khác 0)
Tìm hai số hữu tỉ x,y sao cho:
a) x-y=2(x+y) = x:y
b) x+y = x.y =x:y
a/
\(x-y=2\left(x+y\right)\Rightarrow x=-3y\)
\(x-y=\frac{x}{y}\Rightarrow-3y-y=\frac{-3y}{y}=-3\Rightarrow-4y=-3\Rightarrow y=\frac{3}{4}\)
\(x=-3.\frac{3}{4}=-\frac{9}{4}\)
b/
\(xy=\frac{x}{y}\Rightarrow xy^2=x\Leftrightarrow x\left(y^2-1\right)=0\)\(\Leftrightarrow x=0\) hoặc \(y^2=1\)
+TH1: \(x=0\) \(0+y=0.y=\frac{0}{y}=0\Rightarrow y=0\)(loại do \(y\ne0\) (y là mẫu số)
+TH2: \(y^2=1\) \(\Rightarrow\) \(y=1\) hoặc \(y=-1\)
\(y=1\) thì \(x+1=x.1\Rightarrow1=0\) (vô lí)
\(y=-1\) thì \(x-1=-x\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2};y=-1\)
Tìm 2 số x và y sao cho x+y=xy=x:y
Ta có:
x + y = xy => x = xy - y = y.(x - 1)
=> x : y = x - 1 = x + y
=> y = -1
=> x = -1.(x - 1) = -x + 1
=> 2x = 1 => x = 1/2
Vậy x = 1/2; y = -1
Tìm x,y biết:
x-y=2(x+y)=x:y
x+y=xy=x:y