Những câu hỏi liên quan
PK
Xem chi tiết
DM
17 tháng 11 2023 lúc 21:19

ta có :

918=93.6=(93)6=276

vì 12>6

=> 2712>276

=>2712>918

Bình luận (0)
LD
Xem chi tiết
H24
Xem chi tiết
RH
15 tháng 10 2021 lúc 17:42

b) Để 4x + 19 chia hết cho x + 1 thì 15 chia hết cho x + 1

--> x + 1 là ước của 15

TH1: x + 1 = 15 <=> x = 14

TH2: x + 1 = 1 <=> x = 0

TH3: x + 1 = 3 <=> x = 2

TH4: x + 1 = 5 <=> x= 4

Bình luận (0)
DN
Xem chi tiết
NH
Xem chi tiết
DV
5 tháng 7 2015 lúc 21:06

Bài 1 :

\(3^{22}-9^{10}-27^6=3^{22}-\left(3^2\right)^{10}-\left(3^3\right)^6=3^{22}-3^{20}-3^{18}=3^{18}.\left(3^4-3^2-1\right)=3^{18}.71\)chia hết cho 71 (đpcm).

Bình luận (0)
VG
12 tháng 12 2019 lúc 20:39
Nvffghhcg dêooooo
Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TT
6 tháng 11 2015 lúc 11:51

Ta co :

A=2536 -571+570

A=(52)36-571+570

A=572-571+570

A=570.52-570.51+570.5

A=570(52-51+5)

A=570.25

Vay 570.25 chia het cho 130

dug 100%

Bình luận (0)
H24
Xem chi tiết
TH
Xem chi tiết
NT
8 tháng 8 2023 lúc 10:09

b) \(A=1+5+5^1+5^2+5^3+...+5^{71}\)

\(\Rightarrow A=\left(1+5^1+5^2\right)+5^3\left(1+5^1+5^2\right)+...+5^{69}\left(1+5^1+5^2\right)\)

\(\Rightarrow A=31+5^3.31+...+5^{69}.31\)

\(\Rightarrow A=31\left(1+5^3+...+5^{69}\right)⋮31\left(dpcm\right)\)

Bình luận (0)
NT
8 tháng 8 2023 lúc 10:04

a) \(A=1+5^1+5^2+5^3+...+5^{71}\)

\(\Rightarrow A=\dfrac{5^{71+1}-1}{5-1}=\dfrac{5^{72}-1}{4}\)

\(4A+x=5^{72}\)

\(\Rightarrow4.\dfrac{5^{72}-1}{4}+x=5^{72}\)

\(\Rightarrow5^{72}-1+x=5^{72}\)

\(\Rightarrow x=1\)

Bình luận (0)
TP
Xem chi tiết
NM
12 tháng 12 2021 lúc 9:01

Bài 1:

\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)

\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)

Bình luận (0)
NM
12 tháng 12 2021 lúc 9:05

Bài 2:

\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)

Bình luận (0)
LT
25 tháng 12 2021 lúc 20:18

đúng rùi

Bình luận (0)
 Khách vãng lai đã xóa