Chứng minh :
2 × abc chia hết cho 18, biết a + b + c chia hết cho 9
Chứng minh:
2 × abc chia hết cho 18, biết a+b+c chia hết cho 9
Vì ( a + b + c ) \(⋮\)9 nên abc \(⋮\)9
Mà 9 x 2 = 18 \(⋮\)18
=> 2 x abc \(⋮\)18 ( đpcm )
Bài 1: Cho biết số abc chia hết cho 7 . Chứng minh rằng 2.a + 3.b + c chia hết cho 7
Bài 2 :Biết a+b chia hết cho 7 .Chứng minh rằng aba chia hết cho 7
Bài 3 :Chứng minh rằng : 9. 10n + 18 chia hết cho 27
Bài 4: Biết a+b+c chia hết cho 7 . Chứng minh rằng : nếu abc chia hết cho 7 thì b=c
Chứng minh rằng :
a/ Biết a+b chia hết cho 7.Chứng minh rằng aba chia hết cho 7
b/ Biết a+b+c chia hết cho 7.Chứng minh rằng nếu abc chia hết cho 7 thì b-c chia hết cho 7
a/
\(\overline{aba}=101.a+10b=98a+3a+7b+3b=\)
\(=\left(98a+7b\right)+3\left(a+b\right)\)
\(98a+7b⋮7;\left(a+b\right)⋮7\Rightarrow3\left(a+b\right)⋮7\)
\(\Rightarrow\overline{abc}=\left(98a+7b\right)+3\left(a+b\right)⋮7\)
b/ xem lại đề bài
1. Thực hiện tính :
a, ( 3^2016 + 3^2015 ) : 3^2015
b, ( 14^50 + 14^49 ) : 14^48
c, 7^76 + 51.7^74 / 7^75 - 3.7^74 ( / là chỉ phân số )
d, 0 - 1 + 2 - 3 + 4 - 5 + 6 - 7 +...+ 102
2. Tìm x, biết:
x^5 = x^3
3. Tìm số abcde, biết:
abcde . 9 = edcba
4. Tìm x,y để:
a, 1x85y chia hết cho 2 ; 3 ; 5
b, 10xy5 chia hết cho 45.
c, 2x3y chia hết cho 2 ; 5 và chia cho 9 dư 1
5. Chứng minh:
a, ( 10^3 + 8 ) chia hết cho 18
b, ( 10^10 + 14 ) chia hết cho 6
c, Cho ( ab + cd + eg ) chia hết cho 11 thì abcdeg chia hết cho 11
d,Cho abc = 2.deg. Chứng minh: abcdeg chia hết cho 23 ; 29.
e, Cho abc chia hết cho 27. Chứng minh: bca chia hết cho 27.
Giải giúp mình với nha mọi người.
Bài 2:
\(x^5=x^3\)
\(\Rightarrow x^5-x^3=0\)
\(\Rightarrow x^3\left(x^2-1\right)=0\)
\(\Rightarrow x^3=0\) hoặc \(x^2-1=0\)
+) \(x^3=0\Rightarrow x=0\)
+) \(x^2-1=0\Rightarrow x^2=1\Rightarrow x=1\) hoặc \(x=-1\)
Vậy \(x\in\left\{0;1;-1\right\}\)
Chứng minh rằng abc chia hết cho 6 biết abc chia hết cho 2 và a+b+c chia hết cho 27
6 = 2.3
Vì a + b + c \(⋮\)27
=> a + b + c \(⋮\)3
mà abc \(⋮\)2
=> abc \(⋮\)6
Study well
Vì a + b + c \(⋮\)27
\(\Rightarrow\)abc \(⋮\)27
\(\Rightarrow\)abc \(⋮\)33
\(\Rightarrow\)abc\(⋮\)3
Lại có : abc \(⋮\)2
mà ƯCLN(2;3) = 1
\(\Rightarrow\)abc\(⋮\)2.3
\(\Rightarrow\)abc\(⋮\)6 (đpcm)
Ko thể chứng minh vì số nhỏ nhất khác 0 chia hết cho 27 là 27. Mà 27:3=9. Vậy số duy nhất có 3 chữ số có tổng các chữ số bằng 27 là 999 , số này ko chia hết cho 2 suy ra abc ko chia hết cho 6 (mâu thuẫn với đề bài) (pđcđr)
a) Chứng minh rằng: nếu 4.abc +deg chia hết cho 83 thì abc.deg chia hết cho 83
b) Chứng minh rằng nếu ab=3.cd thì abcd chia hết cho 43
c) Chứng minh rằng nếu abcd chia hết cho 29 thì a+3.b+9.c+27.d chia hết cho 29
d) Chứng minh rằng 10n - 36.n-1 chia hết cho 9 với n thuộc N và n lớn hơn hoặc bằng 2
a) Chứng minh rằng: nếu 4.abc +deg chia hết cho 83 thì abc.deg chia hết cho 83
b) Chứng minh rằng nếu ab=3.cd thì abcd chia hết cho 43
c) Chứng minh rằng nếu abcd chia hết cho 29 thì a+3.b+9.c+27.d chia hết cho 29
d) Chứng minh rằng 10n - 36.n-1 chia hết cho 9 với n thuộc N và n lớn hơn hoặc bằng 2
mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !
Đang định hỏi thì ....
1. a, Cho B = 3 + 3^3 + 3^5 +...+ 3^1991. Chứng minh rằng: B chia hết cho 3 ; B chia hết cho 41
b, Chứng minh rằng: (99^5 - 98^4 - 97^3 - 96^3) chia hết cho 2, cho 5.
c, A = 999993^1999 - 555557^1997. Chứng minh: A chia hết cho 5.
d, A = 8n + 111..1 ( n chữ số 1 ). Chứng minh: A chia hết cho 9.
e, Cho ( abc + deg ) chia hết cho 37. Chứng minh: abcd chia hết chio 37.
2. Tìm 2 số biết rằng tổng của chúng gấp 7 lần hiệu của chúng, còn tích của chúng gấp 192 lần hiệu của chúng.
3. Tìm số nhỏ hơn 100, biết rằng khi chia số đó cho 5 thì được dư là 3, chia cho 11 dư 5.
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
1) Tìm x thuộc N để A, B chia hết cho 2 :
A = 18 + 8 + 12 + x
B = 76 + 9 + x
2) Cho a thuộc N biết a Chia hết cho 12 dư 8. Hỏi a có chia hết cho 4 và 6 không ?
3) Chứng minh rằng :
a, 10^28 + 8 chia hết cho 72
b, 8^8 + 2^20 chia hết cho 1
6) Cho A= 2 + 2^2 + 2^3 + ........ + 2^60
Chứng minh A chia hết cho 3, 7, 15