Mấy bạn giúp mk nhanh nha mk đang cần gấp, cảm ơn mn trước:
Cho: x-y=1. Tính A=x^2-3xy-y^2
TÍNH NHANH+GIẢI THÍCH:
1+(-2)+3+(-4)+...+2001+(-2002)+2003
Cảm ơn các bạn trước. Giúp mk nhanh nha mk đang cần gấp
Nhớ giải thích để giúp mk hiểu nhé!~
1 +( -2) + 3 + (-4) +...+2001 + (-2002) + 2003
= [1 +( -2)] + [3 + (-4)] +...+ [-2000+2001] + [(-2002) + 2003]
= -1 + -1 +............ + 1 + 1
= 0
Tìm xeZ biết (x+1) . (x-2) = -2
Ai biết giải giúp mk với, mk đang cần gấp! Tl đúng và nhanh mk pick nhé <3!!! Cảm ơn trước nha!!! <3 :***
Vì (x+1).(x-2)=-2
=> (x+1);(x-2) thuộc Ư(-2)={-2;-1;1;2}
Ta có bảng sau:
x+1 | -2 | -1 | 1 | 2 |
x | -3 | -2 | 0 | 1 |
x-2 | 1 | 2 | -2 | -1 |
x | 3 | 4 | 0 | 1 |
Vì x giống nhau nên ta chỉ chọn cặp x giống nhau
=> x=0 và x=1
Mik mới học lớp 6 nên chưa chắc nếu sai thì thông cảm nhé
(x+1) . (x-2) = -2
<=>x2-x-2=-2
<=>x2-x=0
<=>x(x-1)=0
<=>x=0 hoặc x-1=0
<=>x=0 hoặc 1
( x + 1 ). ( x-2)= -2
=> x.(1+2)= -2
=>x.3= -2
=) x = (-2).3
=> x = -6
(x-3).(4-5.x)
mn giúp mk nhanh nha mk đang cần gấp
CẢM ƠN TRƯỚC Ự
\(\left(x-3\right)\left(-5x+4\right)\)
\(=-5x^2+4x+15x-12\)
\(=-5x^2+19x-12\)
Cho hàm số \(y=-\frac{1}{3}x\)và hàm số y=x(-4)
+ Vẽ đồ thị hàm số \(y=-\frac{1}{3}x\)
+ Chứng tỏ M(3;-1) là giao của hai đồ thị hàm số trên
+ Tính độ dài OM ( O là gốc tọa độ )
Giúp mk cái cuối nha các bạn ! Cảm ơn trước nha ! Mình đang cần gấp nên mong các bạn giúp mình nhanh nhanh một tý ạ
Bạn nào biết giải thì comment nhanh lên ạ . Ai comment nhanh nhất thì mình sẽ k cho ( nhưng phải hợp lý một chút ạ )
Tính độ dài OM dùng định lý Pytago : \(OM^2=3^2+1^2\)
Từ đó tính ra OM. Mình làm sai à?
Tìm các số tự nhiên x, y biết:
a)(2x2 + 1) . (x - 1) . (x + 2) _< 0
b)x2016 + 2013y = 2015
MK ĐANG CẦN GẤP CẢM ƠN TRƯỚC MẤY BẠN LÀM
a)Ta có:\(\left(2x^2+1\right)\left(x-1\right)\left(x+2\right)\le0\Rightarrow\left(x-1\right)\left(x+2\right)\le0\)(Do\(2x^2+1>0\)
suy ra x-1 và x+2 trái dấu
Mà x-1<x+2
\(\Rightarrow\hept{\begin{cases}x-1\le0\Rightarrow x\le1\\x+2\ge0\Rightarrow x\ge-2\end{cases}}\)
\(\Rightarrow-2\le x\le1\)
b)Ta có Nếu \(x\ge2\Rightarrow x^{2016}\ge2^{2016}>2015\left(L\right)\)
Do đó x<2 mà\(x\inℕ\)
\(\Rightarrow x\in\left\{0;1\right\}\)
Với x=0 thì y=2015/2013(Loại)
Với x=1 thì y=2014/2013(Loại)
Vậy...............
Bài giải
a, \(\left(2x^2+1\right)\left(x-1\right)\left(x+2\right)\le0\)
Do \(\left(2x^2+1\right)\ge0\)
Nên để tích trên bé hơn hoặc bằng 0 thì \(\left(x-1\right)\) và \(\left(x+2\right)\) trái dấu hoặc bằng 0
Mà \(x-1< x+2\)
\(\Rightarrow\hept{\begin{cases}x-1< 0\\x+2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le1\\x\ge-2\end{cases}}\Rightarrow\text{ }-2\le x\le1\)
Mà \(x\in N\text{ }\Rightarrow\text{ }x\in\left\{0\text{ ; }1\right\}\)
a,x/4=y/2=z/3 và 3x-2y+4z=20
b,x/2=y/6 và x-y=10
c, x/2=y/3=z/4 và x.y.z=24
lmf giúp mk vs nha. mk đang cần gấp. mk tick cho. cảm ơn nhìu
a,\(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\Leftrightarrow\frac{3x}{12}=\frac{2y}{4}=\frac{4z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{3x}{12}=\frac{2y}{4}=\frac{4z}{12}=\frac{3x-2y+4z}{12-4+12}=\frac{20}{20}=1\)
Suy ra:\(\hept{\begin{cases}\frac{x}{4}=1\\\frac{y}{2}=1\\\frac{z}{3}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=2\\z=3\end{cases}}\)
b, Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{6}=\frac{x-y}{2-6}=\frac{10}{-4}=-\frac{5}{2}\)
Suy ra:\(\hept{\begin{cases}\frac{x}{2}=-\frac{5}{2}\\\frac{y}{6}=-\frac{5}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-15\end{cases}}}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)
Do đó: \(xyz=2k.3k.4k=24\)
\(\Leftrightarrow24k=24\Rightarrow k=1\)
Từ k=1 ta tìm được x=2;y=3 và z=4
Tìm x,y biết:
a, 2.x-|1-2.x|=1
b, |(x-1).(2-y)|=(x-1).(y-2)
Mấy bạn giúp mk với! Cảm ơn mấy bạn trước nhé!!!
tìm cặp số (x,y) nguyên sao cho: x(x+1)=y^2 +1
Giải nhanh giúp mk vs mk cần gấp, cảm ơn nhiều
Do \(x\left(x+1\right)⋮2\Rightarrow\left(y^2+1\right)⋮2\Rightarrow\) y2 là số lẻ hay y là số lẻ.
Ta đặt \(y=2k+1\left(k\in Z\right)\), khi đó \(x\left(x+1\right)=\left(2k+1\right)^2+1\)
\(\Leftrightarrow\left(x^2+x+\frac{1}{4}\right)-\left(2k+1\right)^2=\frac{5}{4}\)
\(\Leftrightarrow4\left(x+\frac{1}{2}\right)^2-4\left(2k+1\right)^2=5\Leftrightarrow\left[\left(2x+1-4k-2\right)\right]\left[\left(2x+1+4k+2\right)\right]=5\)
\(\Leftrightarrow\left(2x-4k-1\right)\left(2x+4k+3\right)=5\)
Tới đây ta tìm được các cặp (x, k), từ đó suy ra các cặp (x,y)
Các bạn ơi giải giúp mik bài này nha:
Tìm x bằng phương pháp đặt ẩn phụ:
1, \(x^3+2=3\sqrt[3]{3x-2}\)
2,\(x+\sqrt{5-x^2}+x\sqrt{5-x^2}=5\)
3,\(\sqrt{1-x}+\sqrt{1+x}+\frac{x^2}{4}=2\)
Các bạn ơi làm giúp mình nha mình đang cần gấp lắm mấy bạn giúp mk nha . Mk sẽ tick 4 tick cho bạn nào nhanh nhất . Chân thành cảm ơn...
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
1/ \(x^3+2=3\sqrt[3]{3x-2}\)
Đặt \(\sqrt[3]{3x-2}=a\) thì ta có hệ
\(\hept{\begin{cases}x^3+2-3a=0\\a^3+2-3x=0\end{cases}}\)
Lấy trên - dưới ta được
\(x^3-a^3+3x-3a=0\)
\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)
\(\Leftrightarrow x=a\)
\(\Leftrightarrow x=\sqrt[3]{3x-2}\)
\(\Leftrightarrow x^3-3x+2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
2/ \(x+\sqrt{5-x^2}+x\sqrt{5-x^2}=5\)
Đặt \(\sqrt{5-x^2}=a\ge0\) thì ta có hệ
\(\hept{\begin{cases}x+a+ax=5\\a^2+x^2=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+a+ax=5\\\left(a+x\right)^2-2ax=5\end{cases}}\)
Tới đây thì đơn giản rồi. Đặt \(\hept{\begin{cases}a+x=S\\ax=P\end{cases}}\) giải tiếp sẽ ra