Tìm giá trị nhỏ nhất của bt
x^2-6x+11
x^2-20x+101
x^2-4xy+5y^2+10x-22y+28
Tìm giá trị nhỏ nhất của biểu thức:
A=x^2+4x+7
B=x^2-20x+101
C=x^2-4xy+5y^2+10x-22y+28
\(A=\left(x^2+4x+4\right)+3=\left(x+2\right)^2+3\ge3\)
\(A_{min}=3\) khi \(x=-2\)
\(B=\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)
\(B_{min}=1\) khi \(x=10\)
\(C=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)
\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
\(C_{min}=2\) khi \(\left(x;y\right)=\left(-3;1\right)\)
Tìm giá trị nhỏ nhất
x^2-6x+11
B) x^2-20x+101
C) x^2-4xy+5y^2+10x-22y+28
Tìm giá trị lon nhất
4x-x^2+3
-x^2+6x-11
tìm giá trị nhỏ nhất của biểu thức
A=x2-6x+11
B=x2-20x+101
C=x2-4xy+5y2+10x-22y+28
Ta có
A=x2_6x+11=x2_2x3xx+32+2=(x-3)2+2>=2
=>MIN A=2 khi và chỉ khi x-3=0 hay x=3
B=x2-20x+101=x2-2x10xx+102+1=(x-10)2+1>=1
=>MIN B=1 khi và chỉ khi x-10=0 hay x=10
Ta lại có
C=x2-4xy+5y2+10x-22y+28=(x2+(-2y)2-2x2xy+2x5xx-2x5x2y+52)+(y2_2y+12)+2
=(x-2y+5)2+(y-1)2+2>=2
=>MIN C=2 khi và chỉ khi x-2y+5=0 và y-1=0 hay x=-3 và y=1
1)Tìm giá trị nhỏ nhất của biêu thức
a) A=x2-6x+11
b) B=x2-20x+101
c) C=x2-4xy+5y2+10x-22y+28
a, Ta có :\(A=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)do (x-3)^2\(\ge0\)
"Dấu = xảy ra \(\Leftrightarrow x=3\)
Vậy Min A=2 khi x=3
b, Tương tự
Tìm giá trị nhỏ nhất
A=x^2-4xy+5y^2+10x-22y+28
Tìm giá trị nhỏ nhất của biểu thức
a,x2-20x+101
b,4a2+4a+2
c,x2-4xy+5y2+10x-22y+28
a) Ta có : x2 - 20x + 101
= x2 - 20x + 100 + 1
= (x - 10)2 + 1
Mà (x - 10)2 lớn hơn hoặc bằng 0
Nên (x - 10)2 + 1 lớn hơn hoặc bằng 1
=> GTNN của biểu thức là 1 . khi x = 10
b) 4a2+4a+2
=(2a)2+2.2a+1+1
=(2a+1)2+1
Vì (2a+1)2 \(\ge\)0 với mọi x \(\in\)R
=>(2a+1)2+1\(\ge\)1 với mọi x \(\in\)R
dấu "=" xảy ra <=> 2a+1=0 <=> 2a=-1 <=> a= -1/2
câu c bạn tham khảo tại link sau nhé !
https://h oc 24.vn/hoi-dap/question/394806.html
Tìm giá trị nhỏ nhất của
C=x^2-4xy+5y^2+10x-22y+28
C = x2 - 4xy + 5y2 + 10x - 22y + 28
= (x2 - 4xy + 4y2) + (10x - 22y) + 25 + y2 + 3
= (x - 2y)2 + 10(x - 2y) + 25 + y2 + 3
= (x - 2y + 5)2 + y2 + 3 \(\ge\)3
Dấu " = " xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x-2y+5=0\\y=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=5\\y=0\end{cases}}\)
Vậy Min C = 3 \(\Leftrightarrow\)x = 5; y = 0
Tìm giá trị lớn nhất , giá trị nhỏ nhất của mỗi biểu thức sau
a) A=2x^2+9y^2-6xy-6x-12y+2004
b) B=x^2-4xy+5y^2+10x+28-22y
tìm giá trị lớn nhất ( hoặc nhỏ nhất ) của biểu thức:
C = x^2 - 4xy + 5y^2 +10x -22y +28
C = ( x2 - 4xy + 4y2 ) + 10.(x -2y) + ( y2 -2y + 1) + 27
= ( x-2y)2 + 2.5.(x-2y) + 25 + (y-1)2 + 2
= ( x-2y + 5 )2 + (y-1)2 + 2 \(\ge2\)vì \(\left(x-2y+5\right)^2\ge0\forall x,y\) và \(\left(y-1\right)^2\ge0\forall y\)
Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy Min C = 2 \(\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)