Những câu hỏi liên quan
VH
Xem chi tiết
H24
Xem chi tiết
HD
10 tháng 3 2020 lúc 10:33

bài này dễ vào TH 0,5 điểm trong bài thi

nghe có vẻ khó nhưng chú ý 1 chút là có thể làm được

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^{2016}}{c^{2016}}=\frac{b^{2016}}{d^{2016}}\)\(\Rightarrow\left(\frac{a^{2016}}{c^{2016}}\right)^{2017}=\left(\frac{b^{2016}}{d^{2016}}\right)^{2017}\)

áp dụng t/c dãy t/s = nhau

\(\Rightarrow\left(\frac{a^{2016}}{c^{2016}}\right)^{2017}=\left(\frac{b^{2016}}{d^{2016}}\right)^{2017}=\)\(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}\)

biến đổi tiếp cái kia tương tự rồi suy ra chúng = nhau nhé

Bình luận (1)
 Khách vãng lai đã xóa
NL
Xem chi tiết
XO
26 tháng 10 2019 lúc 15:12

A = \(\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{4}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)

\(=\frac{3.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)

\(=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)

\(=\frac{3}{5}+\frac{2}{5}=1\)

Bình luận (0)
 Khách vãng lai đã xóa
XO
26 tháng 10 2019 lúc 15:32

b) B = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6.8^4.3^5}-\frac{5^{10}.7^3:25^5.49}{\left(125.7\right)^3+5^9.14^3}\)

\(=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.7^2}{\left(5^3\right)^3.7^3+5^9.\left(7.2\right)^3}\)

\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}-7^2}{5^9.7^3+5^9.7^3.2^3}\)

\(=\frac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^2.\left(7-1\right)}{5^9.7^3\left(1+2^3\right)}\)

 \(=\frac{1}{3.2}-\frac{5.2}{7.3}\)

\(=\frac{7}{3.2.7}-\frac{5.2.2}{7.3.2}\)

\(=\frac{7}{42}-\frac{20}{42}\)

\(=-\frac{13}{42}\)

Bình luận (0)
 Khách vãng lai đã xóa
KK
9 tháng 3 2020 lúc 20:48

cs ng làm đung r

đag định lm

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
DH
Xem chi tiết
DD
Xem chi tiết
NM
14 tháng 8 2016 lúc 11:16

\(\frac{a}{2015}=\frac{b}{2016}\)

=>a=\(\frac{2015}{2016}b\)

\(\frac{b}{2016}=\frac{c}{2017}\)

=>c=\(\frac{2017}{2016}b\)

\(4.\left(a-b\right).\left(b-c\right)=4.\left(\frac{2015}{2016}b-b\right).\left(b-\frac{2017}{2016}b\right)=4.\frac{-1}{2016}b.\frac{-1}{2016}b=\frac{1}{1016064}b^2\)

\(\left(c-a\right)^2=\left(\frac{2017}{2016}b-\frac{2015}{2016}b\right)^2=\left(\frac{1}{1008}b\right)^2=\frac{1}{1016064}b^2\)

=>ĐPCM

Bình luận (0)
DH
Xem chi tiết
TP
Xem chi tiết
MM
Xem chi tiết
TT
11 tháng 10 2017 lúc 19:42

vì \(\frac{a}{b}\)=\(\frac{c}{d}\)=>\(\frac{a^{2017}}{b^{2017}}\) =\(\frac{c^{2017}}{d^{2017}}\) 

áp dụng tính chất dãy tỉ số bằng nhau

=> \(\frac{a^{2017}}{b^{2017}}\) =\(\frac{c^{2017}}{d^{2017}}\)\(\frac{a^{2017}+c^{2017}}{b^{2017}+d^{2017}}\)=\(\frac{a^{2017}-c^{2017}}{b^{2017}-d^{2017}}\)=\(\frac{\left(a-b\right)^{2017}}{\left(c-d\right)^{2017}}\)(diều phải chứng minh

Bình luận (0)
H24
11 tháng 10 2017 lúc 19:47

Từ \(\frac{a}{b}=\frac{c}{d}=k\)

Suy ra a=bk

           c=dk

Ta có

\(\frac{a^{2017}+b^{2017}}{c^{2017}+d^{2017}}=\frac{\left(bk\right)^{2017}+b^{2017}}{\left(dk\right)^{2017}+d^{2017}}=\frac{b^{2017}.k^{2017}+b^{2017}}{d^{2017}.k^{2017}+d^{2017}}=\frac{b^{^{2017}}\left(k^{2017}+\right)}{d^{2017}\left(k^{2017}+1\right)}=\frac{b^{2017}}{d^{2017}}\)(1)

Ta có

\(\frac{\left(a-b\right)^{2017}}{\left(c-d\right)^{2017}}=\frac{\left(bk-b\right)^{2017}}{\left(dk-d\right)^{2017}}=\frac{\left(b\left(k-1\right)\right)^{2017}}{\left(d\left(k-1\right)\right)^{2017}}=^{\frac{b^{2017}}{d^{2017}}}\)(2)

Từ (1) và (2)

Ta suy ra

\(\frac{a^{2017}+b^{2017}}{c^{2017}+d^{2017}}=\frac{\left(a-b\right)^{2017}}{\left(c-d\right)^{2017}}\)

Bình luận (0)
NT
11 tháng 10 2017 lúc 19:50

từ gt: \(\frac{a}{b}\)=\(\frac{c}{d}\)suy ra ad=bc

\(\frac{a^{2017}+b^{2017}=\left(a-b\right)^{2017}}{^{c^{2017}}+d^{2017}=\left(c-d\right)^{2017}}\)

suy ra \(a^{2017}+b^{2017}.\left(c-d\right)^{2017}=c^{2017}+d^{2017}.\left(a-b\right)^{2017}\)

\(a^{2017}+b^{2017}.c^{2017}-b^{2017}.d^{2017}=c^{2017}+d^{2017}.a^{2017}-d^{2017}.b^{2017}\)

theo mình nghĩ là\(b^{2017}.c^{2017}=d^{2017}.a^{2017}\)

bc=da

Bình luận (0)