CHO CÁC SỐ DƯƠNG a,b,c khác d và \(\frac{a}{b}=\frac{c}{d}\)
CMR. \(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}=\frac{\left(a^{2017}-b^{2017}\right)^{2016}}{\left(c^{2017}-b^{2017}\right)^{2016}}\)
A = \(\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{4}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)
B = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49}{\left(125.7\right)^3+5^9.14^3}\)
C = \(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}\)= \(\frac{\left(a^{2017}-b^{2017}\right)^{2016}}{\left(c^{2017}-d^{2017}\right)^{2016}}\)
cho\(\frac{a}{b}\)=\(\frac{c}{d}\)
CMR: \(\frac{ac}{bd}\)=\(\frac{2016.a^2+2017.c^2}{2016.b^2+2017.d^2}\)
Cho a,b,c,d là 4 số khác 0; biết \(\frac{a}{b}=\frac{c}{d}\).Chứng minh rằng \(\frac{a^{2017}+b^{2017}}{c^{2017}+d^{2017}}=\frac{\left(a-b\right)^{2017}}{\left(c-d\right)^{2017}}\)
Cho \(\frac{a^{2106}+b^{2016}}{c^{2016}+d^{2016}}\)= \(\frac{a^{2016}-b^{2016}}{c^{2016}-d^{2016}}\)Chứng minh rằng \(\frac{a}{b}\)= \(\pm\frac{c}{d}\)
Cho \(\frac{a}{b}\)= \(\frac{c}{d}\). CMR : \(\frac{2015\text{a}-2016b}{2016c+2017\text{d}}\)= \(\frac{2015c-2016\text{d}}{2016\text{d}+2017\text{a}}\)
Cho a, b, c, khác 0. Tính giá trị biểu thức :\(A=x^{2017}+y^{2017}+z^{2017}\)
biết x,y,z thỏa mãn:
\(\frac{x^{2016}+y^{2016}+z^{2016}}{a^{2016}+b^{2016}+c^{2016}}=\frac{x^{2016}+y^{2016}+z^{2016}}{a^{2016}+b^{2016}+c^{2016}}\)
CHO A/B=C/D CHỨNG MINH RẰNG
\(\frac{\left(a-c\right)^4}{\left(b-d\right)^4}=\frac{5a^4+7c^4}{5b^4+7d^4}\)
\(\frac{a+2c}{b+2d}=\frac{a-3c}{b-3d}\)
\(\frac{a^{2016}+c^{2016}}{b^{2016}+d^{2016}}=\frac{\left(a-c\right)^{2016}}{\left(b-d\right)^{2016}}\)
AI LÀM ĐƯỢC CÂU NÀO CŨNG ĐC,GIÚP MÌNH VS GẤP LẮM,THANKS
Cho các số nguyên dương a; b; c; d thỏa mãn a+b+c=2017
Chứng minh rằng gái trị biểu thức sau không phải là một số nguyên
\(A=\frac{a}{2017-c}+\frac{b}{2017-a}+\frac{c}{2017-b}\)