Những câu hỏi liên quan
LU
Xem chi tiết
DP
19 tháng 7 2017 lúc 13:54

\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+....+\frac{19}{9^2.10^2}\)

\(A=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+....+\frac{19}{81.100}\)

\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+....+\frac{1}{81}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{99}{100}< 1\)

\(\Rightarrow A< 1\text{(đpcm) }\)

Bình luận (0)
DL
Xem chi tiết
NT
Xem chi tiết
TP
13 tháng 8 2017 lúc 9:03

Ta có:

\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)........\left(1-\frac{1}{2017}\right).\left(1-\frac{1}{2018}\right)\)

\(\Rightarrow B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.......\frac{2016}{2017}.\frac{2017}{2018}\)

Đởn giản hết sẽ còn là:

\(\Rightarrow B=\frac{1}{2018}\)

Bình luận (0)
NT
13 tháng 8 2017 lúc 9:14

có ai biết câu a, ko vậy

Bình luận (0)
PN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NT
24 tháng 10 2016 lúc 19:02

Bài 1:
Ta có:

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

\(\frac{99}{100}< 1\)

\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)

Bình luận (1)
NC
4 tháng 11 2019 lúc 21:44

Có phải ở sách NCPT ko bn

Bình luận (0)
 Khách vãng lai đã xóa
SG
24 tháng 10 2016 lúc 20:09

Bài 2: Đặt \(B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)

\(3B=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)

\(3B-B=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\right)\)

\(2B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(6B=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(6B-2B=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(4B=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)

\(4B=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)

\(4B=3-\frac{303}{3^{100}}+\frac{100}{3^{100}}\)

\(4B=3-\frac{203}{3^{100}}< 3\)

\(B< \frac{3}{4}\left(đpcm\right)\)

Bình luận (3)
KN
Xem chi tiết
MD
26 tháng 6 2019 lúc 15:57

a)Xét vế trái , ta có :

Gọi tổng các số hạng ở vế trái là A

=> A= \(\frac{1}{3}\)+\(\frac{1}{3^2}\)+ ... +\(\frac{1}{3^{99}}\)

=>3A = 1 + \(\frac{1}{3}\)+ \(\frac{1}{3^2}\)+ ... + \(\frac{1}{3^{98}}\)

=> 3A - A = 1 + \(\frac{1}{3}\)+ \(\frac{1}{3^2}\)+ ... + \(\frac{1}{3^{98}}\)- ( \(\frac{1}{3}\)+\(\frac{1}{3^2}\)+ ... +\(\frac{1}{3^{99}}\))

=> 2A = 1 - \(\frac{1}{3^{99}}\)

=> A = \(\frac{1}{2}\)- \(\frac{1}{3^{99}.2}\) < \(\frac{1}{2}\)

b)\(\frac{3}{1^2.2^2}\)+ \(\frac{5}{2^2.3^2}\)+ ... + \(\frac{19}{9^2.10^2}\)

= \(\frac{3}{1.4}\)+ \(\frac{5}{4.9}\)+ .... + \(\frac{19}{81.100}\)

= 1 - \(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{9}\)+ ... + \(\frac{1}{81}\)- \(\frac{1}{100}\)

= 1 - \(\frac{1}{100}\) <1

Bình luận (0)
NT
27 tháng 6 2019 lúc 8:36

a,

\(\sum\limits^{99}_{x=1}\left(\frac{1}{3^x}\right)=\frac{1}{2}\)

bài a nó có ............

Bình luận (1)
NT
Xem chi tiết
LQ
22 tháng 2 2018 lúc 22:37

đây là toán đâu phải văn. bạn bị say rượu à

Bình luận (0)
AY
Xem chi tiết