\(\frac{X+11}{13}=\frac{y+12}{14}=\frac{z+13}{15}\)Tìm x,y,z và x+y+z =6
Chia đa thức cho đơn thức sau: \(\left(3x^{15}y^{16}z^{14}-\frac{2}{7}x^{13}y^{15}z^{11}+x^{12}y^{14}z^{13}\right):\left(\frac{-7}{3}x^{12}y^{14}z^{11}\right)\)
\(\frac{x+11}{13}=\frac{y+12}{14}=\frac{z+13}{13};x+y+z=6\)
Theo đề bài :
\(\frac{x+11}{13}=\frac{y+12}{14}=\frac{z+13}{13}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+11}{13}=\frac{y+12}{14}=\frac{z+13}{13}=\frac{x+y+z+36}{40}=\frac{21}{20}\)
=> \(\frac{x+11}{13}=\frac{21}{20}\)
=> \(\frac{y+12}{14}=\frac{21}{20}\)
=> \(\frac{z+13}{13}=\frac{21}{20}\)
Rồi đến đây bạn tự làm nốt đi ha !!!
Bài 2
a) Tìm x biết\(\frac{1}{2}-\left|\frac{5}{4}-2x\right|=\frac{1}{3}\)
b) Tìm x biết \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
c) Tìm ba số x, y, z thỏa mãn: \(\frac{x}{y}=\frac{10}{9};\frac{y}{z}=\frac{3}{4}\)và \(x-y+z=78\)
a) \(\frac{1}{2}-|\frac{5}{4}-2x|=\frac{1}{3}\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{4}-2x=\frac{1}{6}\\\frac{5}{4}-2x=-\frac{1}{6}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{5}{4}-\frac{1}{6}=\frac{13}{12}\\2x=\frac{5}{4}+\frac{1}{6}=\frac{17}{12}\end{cases}}}\)
Tự làm nốt và kết luận
b) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)
Vì \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)\ne0\forall x\Rightarrow x+1=0\Leftrightarrow x=-1\)
Vậy ....
c) \(\frac{x}{y}=\frac{10}{9}\Leftrightarrow\frac{x}{10}=\frac{y}{9};\frac{y}{z}=\frac{3}{4}\Leftrightarrow\frac{y}{3}=\frac{z}{4}\Leftrightarrow\frac{y}{9}=\frac{x}{12}\)
\(\Leftrightarrow\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\). Mà \(x-y+z=78\). Áp dụng t/c dãy tỉ số bằng nhau
\(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
\(\Rightarrow x=6.10=60;y=6.9=54;z=6.12=72\)
Vậy..........
x+11/13=y+12/14=z+13/15 và x+y+z=6
C1:
\(\text{Ta có: }\frac{x+11}{13}=\frac{y+12}{14}=\frac{z+13}{15};x+y+z=6\left(1\right)\)
\(\text{Áp dụng tính dãy tỉ số bằng nhau: }\)
\(\Rightarrow\frac{x+11}{13}=\frac{y+12}{14}=\frac{z+13}{15}=\frac{\left(x+11\right)+\left(y+12\right)+\left(z+13\right)}{13+14+15}=\frac{x+11+y+12+z+13}{42}=\frac{\left(x+y+z\right)+\left(11+12+13\right)}{42}\left(2\right)\)
\(\text{Thay (1) và (2), ta được: }\)
\(\frac{6+36}{42}=\frac{42}{42}=1\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x+11}{13}=1\\\frac{y+12}{14}=1\\\frac{z+13}{15}=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+11=13\\y+12=14\\z+13=15\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=2\\z=2\end{matrix}\right.\)
\(\text{Vậy }x=2;y=2;z=2\)
C2:
\(x+y+z=6\left(1\right)\)
\(\text{Ta có: }\frac{x+11}{13}=\frac{y+12}{14}\Rightarrow x+11=\frac{y+12}{14}.13\Rightarrow x=\frac{13.\left(y+12\right)}{14}-11\)
\(\frac{y+12}{14}=\frac{z+13}{15}\Rightarrow z+13=\frac{y+12}{14}.15\Rightarrow z=\frac{15.\left(y+12\right)}{14}-13\)
\(\text{Thay }x=\frac{13.\left(y+12\right)}{14}-11;z=\frac{15.\left(y+12\right)}{14}-13\text{ vào }\left(1\right)\)
\(\Rightarrow\frac{13.\left(y+12\right)}{14}-11+y+\frac{15.\left(y+12\right)}{14}-13=6\)
\(\Leftrightarrow\frac{13.\left(y+12\right)}{14}+y+\frac{15.\left(y+12\right)}{14}-\left(11+13\right)=6\)
\(\Leftrightarrow\frac{13.\left(y+12\right)}{14}+\frac{14y}{14}+\frac{15.\left(y+12\right)}{14}-24=6\)
\(\Leftrightarrow\frac{13.\left(y+12\right)+14y+15.\left(y+12\right)}{14}=6+24\)
\(\Leftrightarrow\frac{\left(y+12\right).\left(13+15\right)+14y}{14}=30\)
\(\Leftrightarrow\left(y+12\right).28+14y=30.14\)
\(\Leftrightarrow14.\left[\left(y+12\right).2+y\right]=420\)
\(\Leftrightarrow2y+12.2+y=420:14\)
\(\Leftrightarrow3y+24=30\)
\(\Leftrightarrow3y=30-24\)
\(\Leftrightarrow3y=6\)
\(\Leftrightarrow y=6:3\)
\(\Leftrightarrow y=2\)
\(\text{Khi đó: }x=\frac{13.\left(2+12\right)}{14}-11\left(\text{Do y=2}\right)\)
\(\Leftrightarrow x=\frac{13.14}{14}-11\)
\(\Leftrightarrow x=13-11\)
\(\Leftrightarrow x=2\)
\(\text{Khi đó: }z=\frac{15.\left(2+12\right)}{14}-13\left(\text{Do y=2}\right)\)
\(\Leftrightarrow z=\frac{15.14}{14}-13\)
\(\Leftrightarrow z=15-13\)
\(\Leftrightarrow z=2\)
\(\text{Vậy }x=2;y=2;z=2\)
Tìm \(x,y,z:\)
\(1)\) \(\frac{x}{y}=\frac{8}{11};\frac{y}{z}=\frac{11}{7}\) và \(x+y-10z=102\)
\(2)\) \(\frac{x}{y}=\frac{8}{11};\frac{y}{z}=\frac{11}{7}\)và \(x+y-10z=-102\)
\(3)\)\(\frac{x}{y}=\frac{9}{25};\frac{y}{z}=\frac{10}{13}\)và \(x+3y+2z=6\)
\(4)\)\(\frac{x}{y}=\frac{9}{25};\frac{y}{z}=\frac{10}{13}\)và \(x-3y+2z=6\)
1.tìm các số x,y,z biết
a)\(\frac{x}{y}=\frac{7}{13}\)và x+y=60 b)\(\frac{x}{y}=\frac{y}{10}=\frac{z}{6}và\) x+y+z=92
c)\(\frac{x}{y}=\frac{9}{10}và\) y-x=120 d)\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}và\) x+y+z=81
e)\(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}và\) y-x=4 f)\(\frac{x}{3}=\frac{y}{4}và\) 2x+5y=10
1)
a) Ta có: \(\frac{x}{y}=\frac{7}{13}\).
=> \(\frac{x}{7}=\frac{y}{13}\) và \(x+y=60.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{60}{20}=3.\)
\(\left\{{}\begin{matrix}\frac{x}{7}=3=>x=3.7=21\\\frac{y}{13}=3=>y=3.13=39\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(21;39\right).\)
c) Ta có: \(\frac{x}{y}=\frac{9}{10}.\)
=> \(\frac{x}{9}=\frac{y}{10}\) và \(y-x=120.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{9}=\frac{y}{10}=\frac{y-x}{10-9}=\frac{120}{1}=120.\)
\(\left\{{}\begin{matrix}\frac{x}{9}=120=>x=120.9=1080\\\frac{y}{10}=120=>y=120.10=1200\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(1080;1200\right).\)
d) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}.\)
=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và \(x+y+z=81.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{81}{9}=9.\)
\(\left\{{}\begin{matrix}\frac{x}{2}=9=>x=9.2=18\\\frac{y}{3}=9=>y=9.3=27\\\frac{z}{4}=9=>z=9.4=36\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(18;27;36\right).\)
Mình chỉ làm 3 câu thôi nhé, dài quá bạn.
Chúc bạn học tốt!
Tìm x, y, z biết :
a. 5x = 8y = 20z và x - y -z = 3
b. \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)Và -x + y + z = 120
c.\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\)Và x X y X z = 20
d. x . y = -30 ; y . z = 42 và z - x = -12
a, 5x = 8y => \(\frac{x}{8}=\frac{y}{5}\)
8y = 20z => 2y = 5z => \(\frac{y}{5}=\frac{z}{2}\)
=> \(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}=\frac{x-y-z}{8-5-2}=\frac{3}{1}=3\)
=> x = 24,y = 15,z = 6
b, \(\frac{6}{11}x=\frac{9}{2}y\)=> \(\frac{12x}{22}=\frac{99y}{22}\)=> 12x = 99y => 4x = 33y => \(\frac{x}{33}=\frac{y}{4}\)
\(\frac{9}{2}y=\frac{18}{5}z\)=> \(\frac{45y}{10}=\frac{36z}{10}\)=> 45y = 36z => 5y = 4z => \(\frac{y}{4}=\frac{z}{5}\)
=> \(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{120}{-24}=-5\)
=> x = -165 , y = -20 , z = -25
c, Đặt : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)=> x = 12k , y = 9k , z = 5k
=> xyz = 12k . 9k . 5k
=> xyz = 540k3
=> 540k3 =20
=> k3 = 20/540
=> k3 = 1/27
=> k = 1/3
Do đó : x= 4 , y = 3 , z = 5/3
Tìm x,y,z thuộc Z và khác 0biết:
\(\frac{x}{7}=\frac{y}{11}=\frac{z}{13}=0,\left(946053\right)\)
x/7 = y/11 = z/13 = 0,(946053) = 946053/999999 = 947/1001
=> x = 947/1001 . 7 = 947/143
y = 947/1001 . 11 = 947/91
z = 947/1001 . 13 = 947/7
tick nha :)))
bn ơi mình nhầm z phải là 947/77 bn nhé
mk viết thiếu số 7
Tìm x, y, x biết:
\(\frac{x}{3}=\frac{y}{4};\frac{y}{6}=\frac{z}{8}\)và 3x - 2y - z = 13
Ta có: \(\frac{x}{3}=\frac{y}{4}\)=> \(\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{6}=\frac{z}{8}\) => \(\frac{y}{12}=\frac{z}{16}\)
=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\) => \(\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\)
=> \(\hept{\begin{cases}\frac{x}{9}=-1\\\frac{y}{12}=-1\\\frac{z}{16}=-1\end{cases}}\) => \(\hept{\begin{cases}x=-1.9=-9\\y=-1.12=-12\\z=-1.16=-16\end{cases}}\)
Vậy ...
\(\frac{x}{3}=\frac{y}{4}\Leftrightarrow x=\frac{3y}{4}\) ; \(\frac{y}{6}=\frac{z}{8}\Leftrightarrow z=\frac{8y}{6}\Leftrightarrow z=\frac{4y}{3}\)
Ta có: 3x - 2y - z = 13
\(\Leftrightarrow3\times\frac{3y}{4}-2y-\frac{4y}{3}=13\)
\(\Leftrightarrow-\frac{1}{2}y=13\)
\(\Leftrightarrow y=-26\). Từ đây ta dễ dàng tính x, y nhờ các công thức đã lập
Đây là phương pháp quy nhiều ẩn về 1 ẩn