Cho biểu thức A= ( x2 +1 )4 +9( x2 +1 )3 + 21( x2 +1 )2 - x2 -31. CMR : A luôn không âm với mọi x
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho biểu thức A = ( x - 3 ) ( x2 + 3x + 9 ) - ( x - 1 )3 + 4 ( x + 2 ) ( 2 - x ) - x
a. Chứng minh A = - x2 - 4x - 10
b. Chứng minh A luôn có giá trị âm với mọi giá trị của số thực x
a: \(A=x^3-27-x^3+3x^2-3x+1-4\left(x^2-4\right)-x\)
\(=3x^2-4x-26-4x^2+16\)
\(=-x^2-4x-10\)
cho pt x2-2(m+1)x+m-4=0
a, Giải pt khi m= -5
b, CMR pt luôn có nghiệm x1, x2 với mọi m
c, Tìm m để pt có 2 nghiệm trái dấu
d, Tìm m để pt có 2 nghiệm dương
e, CMR biểu thức A=x1(1-x2)+x2(1-x1) không phụ thuộc m
f, Tính giá trị của biểu thức x1-x2
Cho phương trình x2 - 2(m + 1)x + m - 4 = 0
a) Chứng minh rằng phương trình luôn có 2 nghiệm phân biệt với mọi m ( phần này không cần làm nhen)
Gọi x1 , x2 là 2 nghiệm của phương trình. d/ CMR biểu thức M = x1(1 - x2) + x2(1 - x1) không phụ thuộc vào m
b/ Ta có: x1 + x2 = 2m + 2
x1x2 = m - 4
M = x1(1 - x2) + x2(1 - x1) = x1 - x1x2 + x2 - x1x2 = (x1 + x2) - 2x1x2 = (2m + 2) - 2.(m - 4) = 10
Vậy không phụ thuộc vào m
CMR giá trị của các biểu thức sau không âm với mọi giá trị của biến x: E = x2 + 6x + 11 F = x2 – x + 1 G = x2 + x + 1
\(E=x^2+6x+11\)
\(=x^2+6x+9+2\)
\(=\left(x+3\right)^2+2>0\forall x\)
\(F=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
Cho phương trình: x2-(2a-1)x-4a-3=0
a)CMR: phương trình luôn có nghiệm với mọi giá trị của a
b) Tìm hệ thức liên hệ giữa 2 nghiệm x1,x2 không phụ thuộc vào a
c) Tìm giá trị nhỏ nhất của biểu thức A=x12+x22
\(x^2-\left(2a-1\right)x-4a-3=0\)
\(\Delta=\left(2a-1\right)^2+4\left(4a+3\right)\)
\(=4a^2-4a+1+16a+12\)
\(=4a^2+12a+13=\left(2a+3\right)^2+4>0\)
Vì \(\Delta>0\Rightarrow\) phương trình có 2 nghiệm phân biệt với mọi a
Vì phương trình có 2 nghiệm phân biệt, áp dụng hệ thức Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2a-1\\x_1.x_2=-4a-3\end{matrix}\right.\) ⇒ \(x_1.x_2+2\left(x_1+x_2\right)=-5\)
Ta có:
\(A=x_1^2+x^2_2=\left(x_1+x_2\right)^2-2x_1.x_2\)
\(=\left(2a-1\right)^2-2\left(-4a-3\right)\)
\(=4a^2-4a+1+8a+6\)
\(=\left(2a+1\right)^2+6\)
Vì \(\left(2a+1\right)^2\ge0\forall a\)
⇒\(A\ge6\)
Min A=6 <=> \(a=-\dfrac{1}{2}\)
Chứng minh biểu thức A = - x2 + 2/3x – 1 luôn luôn âm với mọi giá trị của biến
\(=\dfrac{3x\left(-x^2\right)}{3x}+\dfrac{2}{3x}-\dfrac{3x}{3x}=\dfrac{-3x^3+2-3x}{3x}\)
\(=\dfrac{-x^2+2-3x}{1}=-\left(x^2-2+3x\right)\)
vậy bt A luôn......
bài 1 :a, cmr (x+y+z)^2 -x2-y2-z2=2(xy+yz+zx)
b, tìm số nguyên tố x thỏa mãn :x2-4x-21=0
c, cmr với mọi x thỏa mãn -2<x<2 và x khác -1
biểu thức A luôn có giá trị âm A = 1/(x-2)+1/(x+2)+(x2+1)/(x2-4)
ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
a) Ta có: \(C=\left(x^2-1\right)\cdot\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}+1\right)\)
\(=\left(x^2-1\right)\cdot\left(\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x-1}{\left(x+1\right)\left(x-1\right)}+\dfrac{x^2-1}{\left(x-1\right)\left(x+1\right)}\right)\)
\(=\left(x^2-1\right)\cdot\dfrac{x+1-x+1+x^2-1}{\left(x+1\right)\left(x-1\right)}\)
\(=x^2-1\)
CMR các biểu thức sau luôn có giá trị âm với mọi x
a) -x2 - 2x - 8
b) -x2 - 5x - 11
c) -4x2 - 4x - 2
d) -9x2 + 6x - 7
Lời giải:
a. $-x^2-2x-8=-7-(x^2+2x+1)=-7-(x+1)^2$
Vì $(x+1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên
$-x^2-2x-8=-7-(x+1)^2\leq -7< 0$ với mọi $x\in\mathbb{R}$
Vậy biểu thức luôn nhận giá trị âm với mọi $x$
b.
$-x^2-5x-11=-11+2,5^2-(x^2+5x+2,5^2)< -11+3^2-(x+2,5)^2$
$=-2-(x+2,5)^2\leq -2< 0$ với mọi $x\in\mathbb{R}$ (đpcm)
c.
$-4x^2-4x-2=-1-(4x^2+4x+1)=-1-(2x+1)^2\leq -1< 0$ với mọi $x\in\mathbb{R}$ (đpcm)
d.
$-9x^2+6x-7=-6-(9x^2-6x+1)=-6-(3x-1)^2\leq -6< 0$ với mọi $x\in\mathbb{R}$ (đpcm)