2.N+7chia hết cho N-2 với N thuộc số tự nhiên
Tìm:n thuộc số tự nhiên để 2n+7chia hết cho n+1
Tìm số tự nhiên n sao cho 2n +7chia hết cho n+2
2n+7 \(⋮\)n+2
=> n+2 \(⋮\)n+2
=> ( 2n +7) - (n+2) \(⋮\)n+2
=> ( 2n+7) - 2(n+2) \(⋮\)n+2
=> 2n+7 - 2n -4 \(⋮\)n+2
=> 3 \(⋮\)n+2
=> n+2 thuộc Ư(3)= { 1;3}
=> n thuộc { -1; 1}
Vậy...
Vì n + 2 chia hết ( n + 2 )
\(\Rightarrow\)2n + 4 chia hết ( n + 2 )
\(\Rightarrow\)( 2n + 7 ) - ( 2n + 4 ) chia hết ( n + 2 )
\(\Rightarrow\) 3 chia hết ( n + 2 )
\(\Rightarrow\)n + 2 \(\in\) Ư(3) = { 1 ; 2 }
\(\Rightarrow\)n \(\in\) { - 1 ; 0 }
Vì n \(\in\) N
\(\Rightarrow\)n = 0 .
Vì n + 2 chia hết ( n + 2 )
\(\Rightarrow\)2n + 4 chia hết ( n + 2 )
\(\Rightarrow\)( 2n + 7 ) - ( 2n + 4 ) chia hết ( n + 2 )
\(\Rightarrow\) 3 chia hết ( n + 2 )
\(\Rightarrow\)n + 2 \(\in\) Ư (3) = { 1 ; 2 }
\(\Rightarrow\)n \(\in\) { - 1 ; 0 }
Vì n \(\in\) N
\(\Rightarrow\)n = 0 .
tìm số tự nhiên n biết n>1 sao cho n+7chia hết cho n+1
ta có:
(n+7)⋮(n+1)
=> (n+1)+7 ⋮ (n+1)
=> (n+1) ⋮ Ư(7) = 1,7
TH1: n+1=1
=> n=0
TH2:
n+1=7
=> n=6
Vậy n ∈ 0,6
Ta có : n + 7 ⋮ n + 1
=> (n + 1) + 6 ⋮ n + 1 . Vì n + 1 ⋮ n + 1
=> 6 ⋮ n + 1 => n + 1 ∈ Ư(6)∈{1;2;3;6}
Mà n + 1 > 2 nên n + 1 =3;6 => n = 2;5
tìm số tự nhiên n để
a)n+5chia hết cho n-2
b)n+7chia hết cho 2-n
c)3n+2chia hết cho 2n-1
đ)5n+3chia hết cho 7-3n
Tìm số tự nhiên n sao cho 2n+7chia hết cho n+1
2n+7 = 2(n+1) +5 chia hết cho n+1 khi 5 chia hết cho n+1
n+1 thuộc Ư(5) = {1;5}
+ n+1 = 1 => n =0
+ n+1 =5 => n =4
Vậy n= 0 ;hoặc n = 4
TÌM SỐ TỰ NHIÊN n BIẾT
n+5 chia hết cho n+2
2n+7chia hết cho n+3
3n+4 chia hết cho 2n+1
n2+7 chia hết cho n +1
các câu trên dễ rồi tự giải nhé mk chỉ giải của d thôi
d, n^2 + 7 chia hết cho n+1 (1)
n+1 chia hết cho n+1
=> (n-1)(n+1) chia hết cho n+1
=> n^2 -1 chia hết cho n+1 (2)
từ (1) và (2)
=> n^2+7 - n^2 +1 chia hết cho n+1
=> 8 chia hết cho n+1
=> n+1 thuộc ước của 8
=> n+1 ={ 1,2,4.-1.-2.-4}
=> n={ 0,1,3,-2,-3,-5}
thử lại nhé ( vì đây là giải => nên phải thử lại nha)
1,tìm n biết 5n+7chia hết cho 3n+2
2,tìm số tự nhiên n sao cho tổng A=1!+2!+3!+....+n! là một só chính phương
3,CMR:mếu 8p-1 và p là các số nguyên tố thì8p+1là hợp số
mọi người giúp mình với nha
Tìm số tự nhiên n sao cho ;
a; n+7chia hết n+2
b; n+9chia hết n+3
c;3n+19 chia hết n+1
d; 2n+7 chia hết cho n+2
e; 6n + 39 chia hết cho 2n+1
giúp mình nha
n+7\(⋮n+2\)
=> (n+7)-(n+2)\(⋮n+2\)
=> 5 \(⋮n+2\)
=>n+2\(\inƯ\left(5\right)=\left\{1;5\right\}\)
rồi tự làm típ
mấy câu khác tương tự
vì đề là Tìm số tự nhiên n nên chỉ tìm số dương thui nha
Bài 6
a, chứng minh rằng với mọi số tự nhiên n thuộc N thì 60n +15 chia hết cho 15 nhưng không chia hết cho 30
b, chứng minh rằng không có số tự nhiên nào chia 15 dư 6 , chia 9 dư 1
c, chứng minh rằng 1005a +2100b chia hết cho 15 , với mọi số tự nhiên a,b thuộc N
d, chứng minh rằng A= n2+n+1 không chia hết cho 2 và 5 với mọi số tự nhiên n thuộc N
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5