Những câu hỏi liên quan
BG
Xem chi tiết
NT
Xem chi tiết
H24
11 tháng 1 2020 lúc 22:32

\(5a+2b⋮17\)

\(\Rightarrow60a+24b⋮17\)

\(\Rightarrow\left(51a+17b\right)+\left(9a+7b\right)⋮17\)

Do \(51a+17b⋮17\Rightarrow9a+7b⋮17\Rightarrowđpcm\)

Bình luận (2)
 Khách vãng lai đã xóa
NT
16 tháng 10 2023 lúc 19:31

Hay quá coolki

Bình luận (0)
VH
Xem chi tiết
NP
Xem chi tiết
KB
22 tháng 12 2017 lúc 20:01

chứng minh 3a+2b chia hết cho 17  khi và chỉ khi 10a+b chia hết cho 17

Giải:Ta có:2(10a+b)-(3a+2b)

=20a + 2b - 3a - 2b = 17a chia hết cho 17

Vì 3a+2b chia hết cho 17 nên 2(10a+b) chia hết cho 17

Mà UCLN(2,17)=1 nên 10a+b chia hết cho 17

Vậy......................................

Bình luận (0)
NN
Xem chi tiết
NM
16 tháng 12 2023 lúc 8:16

\(9a+7b⋮17\Rightarrow3\left(9a+7b\right)=27a+21b⋮17\)

\(17a+17b⋮17\)

\(\Rightarrow27a+21b-17a-17b=10a+4b=2\left(5a+2b\right)⋮17\)

\(\Rightarrow5a+2b⋮17\)

Bình luận (0)
VP
16 tháng 12 2023 lúc 8:09

5�+2�⋮17

⇒60�+24�⋮17

⇒(51�+17�)+(9�+7�)⋮17

Do 

Bình luận (0)
NT
Xem chi tiết
BD
24 tháng 11 2016 lúc 19:55

Ta có : 2.(10a+b) - (3a +2b) = 20a + 2b - 3a -2b

                                         = 17a 

          Vì 17chia hết cho17=> 17a chia hết cho 17

                                       => 2.(10a+b)- (3a +2b) chia hết cho 17

  Vì 3a+2b chia hết cho 17 => 2(10a+b) chia hết cho 17

                     Mà (2,17) =1=> 10a+b chia hết cho 17

                  Vậy nếu 3a+2b chia hết cho 17 thì 10a +b chia hết cho 17

Bình luận (0)
H24
6 tháng 11 2017 lúc 6:28

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

Bình luận (0)
HZ
Xem chi tiết
NT
14 tháng 1 2018 lúc 10:34

Ta có:
\(2.\left(10a+b\right)-\left(3a+2b\right)=20a+2b-3a-2b\)
\(=17a\)
\(\text{Vì 17⋮}17\Rightarrow17a⋮17\)
\(\Rightarrow2.\left(10a+b\right)-\left(3a+2b\right)⋮17\)
\(\text{Vì }3a+2b⋮17\Rightarrow2.\left(10a+b\right)\)
\(\text{Mà (2,10)=1}\Rightarrow10a+b⋮17\)
=> 3a + 2b chia hết cho 17 khi 10a + b chia hết cho 17 (a,b ∈ Z ) (đpcm )

Bình luận (0)
TN
Xem chi tiết
NL
13 tháng 1 2016 lúc 21:49

Ta có:  ab = 10a +b

Đặt 10a+ b là c , 3a +2b là d 

Xét biểu thức: 2c - d = 2(10a +b) - (3a + 2b)

                              = 20a + 2b -3a -2b

                              = 17a Chia hết cho 17 

                             = > 2(10a +b) - (3a + 2b) chia hết cho 17

mà 3a +2b chia hết cho 17 => 2(10a +b) chia hết cho 17

                               mà (2,17) = 1 => 10a + b chia hết cho 17

                                                 => ab chia hết cho 17

Vậy ab chia hết cho 17 khi và chỉ khi ( 3a  + 2b ) chia hết cho 17 

Nhớ tick đúng cho mình nhé

Bình luận (0)
H24
Xem chi tiết