Những câu hỏi liên quan
HP
Xem chi tiết
H24
Xem chi tiết
NT
6 tháng 5 2020 lúc 15:48

\(A=\left[\frac{6x^2}{x^3-1}-\frac{2x-2}{x^2+x+1}-\frac{1}{x-1}\right]:\frac{x^2+9}{\left(x-1\right)\left(9-4x\right)}\)

\(=\left[\frac{6x^2}{x^3-1}-\frac{\left(2x-2\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}-\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)

\(=\frac{6x^2-\left(2x^2-4x+2\right)-x^2-x-1}{\left(x^2+x+1\right)\left(x-1\right)}\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)

\(=\frac{5x^2-2x^2+4x-2-x-1}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)

\(=\frac{3x^2+3x-3}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)

Biểu thức A bạn viết đúng chưa?

Bình luận (0)
 Khách vãng lai đã xóa
YH
Xem chi tiết
HT
Xem chi tiết
NL
Xem chi tiết
NT
8 tháng 1 2022 lúc 15:01

b: \(x^2-x+1=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

c: \(A=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=3

d: \(B=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\le-1\forall x\)

Dấu '=' xảy ra khi x=2

Bình luận (0)
NT
Xem chi tiết
H24
19 tháng 8 2016 lúc 10:05

Áp dụng bđt cosi ta được \(4x+\frac{1}{4x}\ge2\sqrt{4x.\frac{1}{4x}}=2\)
\(x+\frac{1}{4}\ge2\sqrt{\frac{1}{4}x}=\sqrt{x}\Leftrightarrow4x+1\ge4\sqrt{x}\Leftrightarrow4\left(x+1\right)\ge4\sqrt{x}+3\Leftrightarrow-\left(4\sqrt{x}+3\right)\ge-4\left(x+1\right)\Leftrightarrow-\frac{\left(4\sqrt{x}+3\right)}{x+1}\ge-4\)Khi đó \(A\ge2-4+2016=2014\)
Dấu = xảy ra khi x=1/4

Bình luận (0)
TN
Xem chi tiết
H24
27 tháng 3 2016 lúc 21:06

tách mẫu thành 3x+3y +x+z 
mấy mauax còn lại tương tự
sau đó dúng ssww

Bình luận (0)
NT
27 tháng 3 2016 lúc 18:48

http://diendantoanhoc.net/topic/156111-t%C3%ADnh-gi%C3%A1-tr%E1%BB%8B-l%E1%BB%9Bn-nh%E1%BA%A5t-c%E1%BB%A7a-m-frac14x3yz-frac1x4y3z-frac13xy4z/

Bình luận (0)
NT
27 tháng 3 2016 lúc 18:52

tính giá trị lớn nhất của M = $\frac{1}{4x+3y+z} + \frac{1}{x+4y+3z} + \frac{1}{3x+y+4z}$ - Bất đẳng thức và cực trị - Diễn đàn Toán học

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
HA
15 tháng 6 2019 lúc 9:07

Ủa đây là lớp 8 chứ bạn nhỉ?

Bình luận (0)
H24
15 tháng 6 2019 lúc 9:07

Sorry mik chỉ làm được bài b mong bạn thông cảm

Ta có : B=x2+x+1x2+2x+1=x2+x+1(x+1)2

Đặt y=x+1⇒x=y−1⇒B=(y−1)2+(y−1)+yy2=y2−y+1y2=1y2−1y+1

Đặt : t=1yB=t2−t+1=(t−12)2+34≥34

Vậy Bmin=34⇔t=12⇔y=2⇔x=1

~Hok tốt~

P/s:Mik nghĩ thế mong đúng

Bình luận (0)
H24
15 tháng 6 2019 lúc 9:08

Lớp 7 toán nâng cao đó bạn

Bình luận (0)