Những câu hỏi liên quan
NT
Xem chi tiết
HA
Xem chi tiết
HA
Xem chi tiết
HA
Xem chi tiết
BC
Xem chi tiết
MH
23 tháng 12 2021 lúc 5:30

Vì \(\left\{{}\begin{matrix}\left|2x-27\right|^{2011}\text{≥0,∀x}\\\left(3y+10\right)^{2012}\text{≥0,∀y}\end{matrix}\right.\)

⇒ \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\text{≥0,∀x},y\)

Dấu "=" ⇔ \(\left\{{}\begin{matrix}2x-27=0\\3y+10=0\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=\dfrac{27}{2}\\y=-\dfrac{10}{3}\end{matrix}\right.\)

Vậy ...

Bình luận (0)
LV
Xem chi tiết
XO
18 tháng 12 2020 lúc 19:55

Ta có \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2022}\ge0\forall y\end{cases}}\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2022}\ge0\forall x;y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}\)

Vậy x = 27/2 ; y = -10/3 là giá trị cần tìm

Bình luận (0)
 Khách vãng lai đã xóa
HB
18 tháng 12 2020 lúc 19:58

ta có |2x-27| > hoặc = 0=> |2x-27|^2011> hoặc = 0

(3y+10)^2012> hoặc 0 mà |2x-27|^2011+(3y+10)^2012=0 

=>2x-27=0 hoặc 3y+10=0=>2x=27 hoặc 3y=-10

=>x=13,5 hoặc x=-10/3

vậy .............................

Bình luận (0)
 Khách vãng lai đã xóa
NT
18 tháng 12 2020 lúc 20:15

\(\left|2x+27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

\(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall y\end{cases}}\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\forall x;y\)

Dấu ''='' xảy ra \(x=\frac{27}{2};y=-\frac{10}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
NT
10 tháng 7 2017 lúc 16:13

\(\left\{{}\begin{matrix}\left|2x-27\right|^{2011}\ge0\\\left(3y+10\right)^{2012}\ge0\end{matrix}\right.\Leftrightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\)

\(\left|2x-27\right|^{2017}+\left(3y+10\right)^{2012}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left|2x-27\right|^{2011}=0\\\left(3y+10\right)^{2012}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=13,5\\y=\dfrac{-10}{3}\end{matrix}\right.\)

Vậy...

Bình luận (1)
MS
10 tháng 7 2017 lúc 16:21

\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

\(\left|2x-27\right|^{2011}\ge0;\left(3y+10\right)^{2012}\ge0\)

Dấu "=" xảy ra khi:

\(\left|2x-27\right|^{2011}=0\)

\(\Rightarrow\left|2x-27\right|=0\Rightarrow2x-27=0\Rightarrow2x=27\Rightarrow x=\dfrac{27}{2}\)

\(\left(3y+10\right)^{2012}=0\)

\(\Rightarrow3y+10=0\Rightarrow3y=-10\Rightarrow y=\dfrac{-10}{3}\)

Bình luận (0)
MV
10 tháng 7 2017 lúc 16:22

Ta thấy:

\(\left|2x-27\right|\ge0\Rightarrow\left|2x-27\right|^{2011}\ge0\\ \left(3y+10\right)^{2012}\text{ có mũ chẵn}\Rightarrow\left(3y+10\right)^{2012}\ge0\\ \Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\)

Dấu \("="\) xảy ra khi

\(\left\{{}\begin{matrix}\left|2x-27\right|^{2011}=0\\\left(3y+10\right)^{2012}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}\left|2x-27\right|=0\\3y+10=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}2x-27=0\\3y+10=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}2x=27\\3y=10\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{27}{2}\\y=\dfrac{10}{3}\end{matrix}\right.\)

Vậy \(x=\dfrac{27}{2}\), \(y=\dfrac{10}{3}\)

Bình luận (0)
NT
Xem chi tiết
VA
20 tháng 4 2017 lúc 8:52

X=?

Y=?

Bình luận (0)
KB
19 tháng 12 2017 lúc 12:32

Tìm các giá trị của x, y thỏa mãn: |2x-27|2011+(3y+10)2012=0

Giải:Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\\\left(3y+10\right)^{2012}\ge0\end{cases}}\)\(\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\)

Kết hợp với giả thiết ta thấy \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\) nên:

\(\hept{\begin{cases}\left|2x-27\right|^{2011}=0\\\left(3y+10\right)^{2012}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}\)

Vậy x=\(\frac{27}{2}\);y=\(-\frac{10}{3}\) thỏa mãn bài toán

Bình luận (0)
DT
Xem chi tiết
NT
11 tháng 12 2016 lúc 11:31

Sửa lại:
\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

\(\Rightarrow\left|2x-27\right|^{2011}=0\)\(\left(3y+10\right)^{2012}=0\)

+) \(\left|2x-27\right|^{2011}=0\)

\(\Rightarrow\left|2x-27\right|=0\)

\(\Rightarrow2x-27=0\)

\(\Rightarrow2x=27\)

\(\Rightarrow x=13,5\)

+) \(\left(3y+10\right)^{2012}=0\)

\(\Rightarrow3y+10=0\)

\(\Rightarrow3y=-10\)

\(\Rightarrow y=\frac{-10}{3}\)

Vậy \(x=13,5;y=\frac{-10}{3}\)

 

Bình luận (0)
NT
11 tháng 12 2016 lúc 11:02

Ta có:

\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

\(\Rightarrow\left|2x-27\right|^{2011}=0\)\(\left(2y+10\right)^{2012}=0\)

+) \(\left|2x-27\right|^{2011}=0\)

\(\Rightarrow\left|2x-27\right|=0\)

\(\Rightarrow2x-27=0\)

\(\Rightarrow2x=27\)

\(\Rightarrow x=13,5\)

+) \(\left(2y+10\right)^{2012}=0\)

\(\Rightarrow2y+10=0\)

\(\Rightarrow2y=-10\)

\(\Rightarrow y=-5\)

Vậy \(x=13,5;y=-5\)

 

Bình luận (3)