Cho x^2+y^2=2, tìm giá trị nhỏ nhất của biểu thức T = x+y
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
tìm giá trị lớn nhất giá trị nhỏ nhất của biểu thức của biểu thức M= (x^2-y^2)(1-x^2.y^2)/(1+x^2)^2.(1+y^2)^2
Cho x,y thõa x^2+y^2-xy=1. Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P=x^4+y^4-x^2y^2.
Từ gt ta có x^2+y^^2=xy+1
=>P=(x^2+y^2)^2-2x^2y^2-x^2y^2
=(xy+1)2-2x2y2-x2y2
=x2y2+xy+1-3x2y2=-2x2y2+xy+1
=......
\(1=x^2+y^2-xy\ge2xy-xy=xy\Rightarrow xy\le1\)
\(1=x^2+y^2-xy\ge-2xy-xy=-3xy\Rightarrow xy\ge-\dfrac{1}{3}\)
\(\Rightarrow-\dfrac{1}{3}\le xy\le1\)
\(P=\left(x^2+y^2\right)^2-2\left(xy\right)^2-\left(xy\right)^2=\left(xy+1\right)^2-3\left(xy\right)^2=-2\left(xy\right)^2+2xy+1\)
Đặt \(xy=t\in\left[-\dfrac{1}{3};1\right]\)
\(P=f\left(t\right)=-2t^2+2t+1\)
\(f'\left(t\right)=-4t+2=0\Rightarrow t=\dfrac{1}{2}\)
\(f\left(-\dfrac{1}{3}\right)=\dfrac{1}{9}\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{3}{2}\) ; \(f\left(1\right)=1\)
\(\Rightarrow P_{max}=\dfrac{3}{2}\) ; \(P_{min}=\dfrac{1}{9}\)
Tìm giá trị nhỏ nhất của biểu thức T=(x+y)^2+(x-1)^2+(y-1)^2+5
Cho bốn số thực dương x, y, z, t thỏa mãn x+y+z+t= 2. Tìm giá trị nhỏ nhất của biểu thức A = ( x + y + z ) ( x + y ) x y z t
Ta có:
4 A = ( x + y + z + t ) 2 ( x + y + z ) ( x + y ) x y z t ≥ 4 ( x + y + z ) t ( x + y + z ) ( x + y ) x y z t = 4 ( x + y + z ) 2 ( x + y ) x y z ≥ 4.4 ( x + y ) z ( x + y ) x y z = 16 ( x + y ) 2 x y ≥ 16.4 x y x y ≥ 64 ⇒ A ≥ 16
Đẳng thức xảy ra khi và chỉ khi x + y + z + t = 2 x + y + z = t x + y = z x = y ⇔ x = y = 1 4 z = 1 2 t = 1
Cho các số tự nhiên x,y thỏa mãn x+y=101
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức T=\(x^2-xy+y^2\)
Có xy ≤ 1/4 (x+y)^2
=> 3xy ≤ 3/4 (x+y)^2
=> T = x^2-xy+y^2 = (x+y)^2 - 3xy ≥ (x+y)^2 - 3/4 (x+y)^2 = 1/4 (x+y)^2
=10201/4
Dấu = xảy ra khi x=y=101/2
T = (x+y)^2 - 3xy <= (x+y)^2 = 101^2 = 10201
Dấu = xảy ra khi 1 số = 0, 1 số = 101
Cho x+y=2. Tìm giá trị nhỏ nhất của biểu thức: S=x^2+y^2
Áp dụng BĐT bunhiacopxki ta được:
2S=(x2+y2)(1+1)\(\ge\)(x+y)2=4
=>S\(\ge\)2
Dấu "=" xảy ra khi: x=y=1
Vậy GTNN của S là 2 tại x=y=1
Cho x+y=2 .Tìm giá trị nhỏ nhất của biểu thức S=x^2 + y^2
+ từ x^2+y^2+xy=1 => (x - 1/2*y)^2 + 3/4*y^2 = 1
đặt x - 1/2*y = sina và √3/2*y = cosa <> y = 2cosa / √3 và x = sina + cosa /√3
thay vào b ta có
b = (sina + cosa/√3)^2 - ( sina + cosa/√3). 2cosa/√3 + 8/3*(cosa)^2
= (sina)^2 + sin2a/√3 + (cosa)^2/3 - sin2a/√3 - 2/3*(cosa)^2 + 8/3*(cosa)^2
= (sina)^2 + 7(cosa)^2 / 3 = 1+ 4(cosa)^2 / 3 = 1 + 2(1 + cos2a) / 3 = 5/3 + 2cos2a/ 3
=> 1=< b <=7/3
+ min = 1 khi cos2a = -1 hay cosa = 0 <> y = 0 và x = +- 1
+ max = 7 / 3 khi cos2a = 1 hay sina = 0 <> x = 1 + 1/√3 và y = 2 / √3 hoạc x = 1 - 1 / √3
và y = -2 / √3
copy lố rồi bn ơi
Áp dụng BĐT C-S ta có:
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow S=x^2+y^2\ge\frac{4}{2}=2\)
Khi x=y=1
Bài 1:Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=x^2+y^2/x^2+xy+4y^2 với x2+xy+4y^2 khác 0.Bài 2:Với x;y thỏa mãn điều kiện x^2+y^2=1.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=2(xy+y^2)/1+2x^2+2xy.Giúp mik nhé mai mik đi hc r