cho a,b nguyen duong va \(\left(a-3\right);\left(b+2017\right)\) deu chia het cho 6 . cmr \(4^a+a+b\) chia hết cho 6
Cho a,b,c la cac so nguyen duong thoa man: abc=1. CMR
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
bài này chứng minh bài toán phụ, khá là phức tạp, trình bày ra chắc chết quá
bài này mình thấy tren mạng đăng lên đó, có kết quả nhưng ko copy được
Bài này bạn xem lại trong chtt ấy! Mình giải bài này rồi, giải bằng miệng cho nhanh.
cho x, y la cac so nguyen duong sao cho A = x^4 + y^4 / 15 cung la so nguyen duong . cmr : x va y deu chia het cho 3 va 5 , tu do tim gtnn cua A
cho a, b, c, d la 4 so nguyen duong thoa man: b= \(\frac{a+c}{2}va\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{d}\right)\)
chung minh: \(\frac{a}{b}=\frac{c}{d}\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{2x^2-\left(2x^2-3x+1\right)}{x\sqrt{2}-\sqrt{2x^2-3x+1}}=\lim\limits_{x\rightarrow-\infty}\dfrac{3x-1}{x\sqrt{2}-\sqrt{2x^2-3x+1}}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{3-\dfrac{1}{x}}{\sqrt{2}+\sqrt{2-\dfrac{3}{x}+\dfrac{1}{x^2}}}=\dfrac{3}{2\sqrt{2}}=\dfrac{3}{4}\sqrt{2}\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=4\end{matrix}\right.\)
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{2x^2-3x+1}+x\sqrt{2}\right)=+\infty\) nên chắc chắn đề bài sai
Đề đúng sẽ là: \(x\rightarrow-\infty\) hoặc \(x\rightarrow+\infty\) thì biểu thức là \(\sqrt{2x^2-3x+1}-x\sqrt{2}\)
Cho cac so a,b,c,d duong va a.b.c.d=1 .CM
\(\left(a+b\right).\left(b+c\right).\left(c+d\right)\)\(.\left(d+a\right)\ge16\)
rtim 3 so nguyen duong a,b,c sao cho a<b<c va ab+bc+ca+a+b+c chia het cho abc
cho 3 so a,b,c la so nguyen . Trong do co 1 so nguyen am , 1 so nguyen duong va 1 so bang 0 , thoa man IaI=b^2.(b-c) . Hoi a,b,c thuoc loai so nao
Tim x,a,b nguyen duong thoa man :x+4=3^a va 4x+7=3^b
Tim x,a,b nguyen duong thoa man :x+4=3^a va 4x+7=3^b