Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TN
Xem chi tiết
NA
7 tháng 8 2016 lúc 22:38

diều kiện x >= 0

P=\(\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right).\frac{4\sqrt{x}}{3}\)

\(\frac{x+2-x+\sqrt{x}-1}{x\sqrt{x}+1}.\frac{4\sqrt{x}}{3}\)

=\(\frac{\sqrt{x}+1}{x\sqrt{x}+1}.\frac{4\sqrt{x}}{3}\)=\(\frac{4\sqrt{x}}{3x-3\sqrt{x}+3}\)

P=8/9

<=> \(\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\frac{8}{9}\)

<=> \(3\sqrt{x}=2x-2\sqrt{x}+1\)

<=> \(2x-5\sqrt{x}+2=0\)

<=> \(\left[\begin{array}{nghiempt}x=4\\x=\frac{1}{4}\end{array}\right.\)

vậy x=4 hoặc x=1/4 thì p=8/9

 

 

Bình luận (0)
TL
7 tháng 8 2016 lúc 22:45

a) \(P=\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\cdot\frac{4\sqrt{x}}{3}\left(ĐK:x\ge0;x\ne-1\right)\)

\(=\left[\frac{x+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}+1}\right]\cdot\frac{4\sqrt{x}}{3}\)

\(=\frac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}\)

\(=\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}\)

\(=\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

b) Để P=8/9

\(\Leftrightarrow\)\(\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\frac{8}{9}\)

\(\Leftrightarrow24\left(x-\sqrt{x}+1\right)=36\sqrt{x}\)

\(\Leftrightarrow24x-24\sqrt{x}+24-36\sqrt{x}=0\)

\(\Leftrightarrow24x-60\sqrt{x}+24=0\)

\(\Leftrightarrow12\left(2x-5\sqrt{x}+2\right)=0\)

\(\Leftrightarrow\left(2x-\sqrt{x}\right)-\left(4\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)-2\left(2\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2\sqrt{x}-1=0\\\sqrt{x}-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}=\frac{1}{2}\\\sqrt{x}=2\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{4}\left(tm\right)\\x=4\left(tm\right)\end{array}\right.\)

Bình luận (0)
CA
Xem chi tiết
PL
11 tháng 7 2019 lúc 20:47

\(đkxđ\Leftrightarrow x\ge4\)

\(P=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)

\(=\frac{\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}}{\sqrt{\frac{4^2}{x^2}-2.\frac{4}{x}+1}}\)

\(=\frac{\sqrt{\left(x-4+2\right)^2}+\sqrt{\left(x-4-2\right)^2}}{\sqrt{\left(\frac{4}{x}-1\right)^2}}\)

\(=\frac{|x-2|+|x-6|}{|\frac{4}{x}-1|}=\frac{x-2+|x-6|}{|\frac{4}{x}-1|}\)

Dùng bảng xét dấu nha

Bình luận (0)
TQ
Xem chi tiết
HB
Xem chi tiết
TN
Xem chi tiết
HN
9 tháng 8 2016 lúc 22:35

a) Điều kiện : x > 0

\(P=\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+1=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1\)

\(=x+\sqrt{x}-2\sqrt{x}-1+1=x-\sqrt{x}\)

b) Đặt \(y=\sqrt{x},y\ge0\)

\(\Rightarrow P=y^2-y=\left(y-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Dấu "=" xảy ra khi và chỉ khi \(y=\frac{1}{2}\Rightarrow x=\frac{1}{4}\)

Vậy Min P = \(-\frac{1}{4}\) tại \(x=\frac{1}{4}\)

Bình luận (0)
TN
Xem chi tiết
NA
2 tháng 8 2016 lúc 21:44

Hỏi đáp Toán

Bình luận (0)
TN
Xem chi tiết
NT
Xem chi tiết
BB
Xem chi tiết