Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho biểu thức: \(P=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)
a) Rút gọn gọn P
b) Tìm x để P đạt Min, tìm min đó
c) Tìm x nguyên để y nguyên
Tìm min của biểu thức sau
\(P=\frac{\sqrt{1-x^3}-3x+5}{\sqrt{1-x^2}}\)
cho biểu thức A = \(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{\sqrt{x}}{\sqrt{x}-3}+\frac{x\sqrt{x}-5x+6\sqrt{x}-24}{x-9}\)
1. tìm tập xác định + rút gọn A.
2. Tìm min A.
tìm Min của biểu thức:
M= \(\frac{x-3}{\sqrt{x-1}-\sqrt{2}}\)
N= \(\sqrt{x^2+4x+4}+\sqrt{x^2-4x+4}\)
Tìm min của biểu thức
\(A=32\frac{x}{y}+2008\frac{y}{x}\left(vớix+\frac{1}{y}\le1\right)\)
Tìm max và min của
\(B=3\sqrt{x-1}+4\sqrt{5-x}\)
1. Cho biểu thức:
B= ( \(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-\sqrt{x}}\)) :\(\frac{1}{\sqrt{x}-1}\)
a) Rút gọn B
b) Tìm Min B
2. Rút gọn biểu thức:
\(\sqrt{\frac{1}{1-2x+x^2}}.\sqrt{\frac{4-4x+4x^2}{81}}\)
3. giải phương trình: 3+\(\sqrt{2x-3}\)= x
Cho biểu thức :
\(P=\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) Rút gọn P
b)Tính P với \(x=14-6\sqrt{5}\)
c)Tìm Min của P
Tìm min của biểu thức Z = \(\frac{\sqrt{x}-5}{\sqrt{x}+2}\), (\(x\ge0\))
Cho biểu thức \(A=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\left(x\ge0,x\ne1\right)\)
1. Rút gọn A
2. Với x > 1 tìm \(min\frac{1}{A}\)