phan tich da thuc thanh nhan tu(x^2+X)+3(x^2+x)+2
Phan tich da da thuc thanh nhan phan tu
(x^2+x+1)(x^2+x+2)-12
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12\)
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-10\)
\(=\left(x^2+x+5\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)
phan tich da thuc thanh nhan tu
x^2-x-y^2-y
x^2-2xy+y^2-z^2
bai 32 va 33 sbt
lop 8 bai phan tich da thuc thanh nhan tu bang cach nhom hang tu
Ta có
a, x2-x-y2-y
=x2-y2-(x+y)
=(x-y)(x+y) - (x+y)
=(x+y)(x-y-1)
b, x2-2xy+y2-z2
=(x-y)2-z2
=(x-y-z)(x-y+z)
con bai 32, 33 neu ban tra loi duoc minh h them
Phan tich da thuc thanh nhan tu
x(x+1)(x+2) + 2*(x+3)+1
( x+2)(x+3)(x-7)(x-8)-144 phan tich da thuc thanh nhan tu
bạn có biết viết dấu ko nếu ko biết mik bảo cho s là sắc f là huyền x là ngã r là hỏi j là nặng
X^9+x^3+x^2+x+1 phan tich da thuc thanh nhan tu
Phan tich da thuc sau thanh nhan tu : (x+1)(x+2)(x+3)(x+4)-8
Gợi ý:
Nhóm:\(\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-8\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-8\)
Đặt \(t=x^2+5x+4\) thì biểu thức trở thành:
\(t\left(t+2\right)-8=t^2+2t-8=\left(t-2\right)\left(t+4\right)\)
Rồi bạn làm tiếp, nếu còn phân tích được thì phải phân tích, mình bận rồi.
(x + 1)(x + 2)(x + 3)(x + 4) - 8
= [(x + 1)(x + 4)][(x + 2)(x + 3)] - 8
= (x2 + 4x + x + 4)(x2 + 3x + 2x + 6) - 8
= (x2 + 5x + 4)(x2 + 5x + 6) - 8
Đặt x2 + 5x + 5 = t
⇒ (x2 + 5x + 5 - 1)(x2 + 5x + 5 + 1) - 8 (1)
Thay t = x2 + 5x + 5 vào (1), ta có:
(t - 1)(t + 1) - 8 = t2 - 1 - 8 = t2 - 9
= (t - 3)(t + 3)
⇔ (x2 + 5x + 5 - 3)(x2 + 5x + 5 + 3)
= (x2 + 5x + 2)(x2 + 5x + 8)
Chúc bạn học tốt !!!!!!!!
(x+1)(x+2)(x+3)(x+4)-8
= [(x+1)(x+4)][(x+2)(x+3)]-8
= (x2+4x+x+4)(x2+3x+2x+6)-8
= (x2+5x+5-1)(x2+5x+5+1)-8
= (x2+5x+5)2-12-8
= (x2+5x+5)2-9
= (x2+5x+5) -32
= (x2+5x+5-3)(x2+5x+5+3) {HĐT số 3}
= (x2+5x+2)(x2+5x+8)
phan tich da thuc thanh nhan tu (x2-x+2)+(x-2)
\(=\left(x.x-x+2\right)+\left(x-2\right)\)
\(=x\left(x-x+2-2\right)=x.0\)
phan tich da thuc thanh nhan tu: x(x+2)(x^2+2x+2)+1
x(x+2)(x^2+2x+2)+1 = (x^2+2x)(x^2+2x+1)+1
Đặt x^2+2x+1=y ta được:
(y-)(y+1)+1=y^2-1+1=y^2
= (x^2+2x+1)^2
= ( x + 1 )^4
x^4+x^3-9x^2+10x-8 phan tich da thuc thanh nhan tu
Thay `x = 2` ta được :
`x^4+x^3-9x^2+10x-8`
`= 2^4 + 2^3 - 9*2^2 + 10*2 - 8`
`= 16 + 8 - 36 + 20 - 8`
`= 0`
Vậy `x = 2` là nghiệm của phương trình trên
Do đó ta thực hiện phép chia :
\(\left(x^4+x^3-9x^2+10x-8\right):\left(x-2\right)\)
Vậy \(x^4+x^3-9x^2+10x-8=\left(x-2\right)\left(x^3+3x^2-3x+4\right)\).