Những câu hỏi liên quan
LN
Xem chi tiết
NT
6 tháng 8 2022 lúc 22:05

\(\Leftrightarrow\left(a+2002\right)\left(b-2001\right)=\left(b+2001\right)\left(a-2002\right)\)

\(\Leftrightarrow ab-2001a+2002b-2002\cdot2001=ab-2002b+2001a-2001\cdot2002\)

=>-4002a=-4004b

hay a/2002=b/2001

Bình luận (0)
LM
Xem chi tiết
NH
18 tháng 2 2016 lúc 22:18

phần a nhé

1/a+1/b+1/c=(a+b+c)(1/a+1/b+1/c)=3+(a/b+b/a)+(b/c+c/b)+(a/c+c/a)            do a+b+c=1

áp dụng bdt cosi cho các  so dương a/b,b/a,a/c,c/a,b/c,c/b

a/b+b/a >=2

b/c+c/b>=2

a/c+c/a>=2

cộng hết vào suy ra 1/a+1/b+1/c >=9       

Bình luận (0)
H24
Xem chi tiết
NV
4 tháng 5 2016 lúc 20:31

Ta có:

\(\frac{2000}{2001}\)\(\frac{2000}{2001+2002}\)(1)

\(\frac{2001}{2002}\)\(\frac{2001}{2001+2002}\)(2)

Cộng các bất đẳng thức (1) và ( 2) vế với nhau:

Vậy \(\frac{2000}{2001}\)\(\frac{2001}{2002}\)\(\frac{2000+2001}{2001+2002}\)hay A > B.

Bình luận (0)
VT
Xem chi tiết
NT
Xem chi tiết
NH
15 tháng 8 2017 lúc 11:56

Ta có :

\(b^2=ac\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}\)

\(c^2=bd\Leftrightarrow\dfrac{b}{c}=\dfrac{c}{d}\)

\(\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

\(\dfrac{a^3}{b^3}=\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\)

\(\Leftrightarrow\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)

Bình luận (0)
NL
Xem chi tiết
KF
30 tháng 4 2015 lúc 12:10

B=2000/2001+2002 + 2001/2001+2002

Ta có:

2000/2001 > 2000/2001+2002

2001/2002 > 2001/2001+2002

Vậy A >B

Bình luận (0)
CP
30 tháng 4 2015 lúc 12:18

\(B=\frac{2000}{2001}+2002+\frac{2001}{2001}+2002\)
Ta có: \(\frac{2000}{2001}>\frac{2000}{2001}+2002\)
\(\frac{2001}{2002}>\frac{2001}{2001}+2002\)
Vậy A>B

Bình luận (0)
LH
30 tháng 4 2015 lúc 12:20

Bạn Hoàng và sakura thủ..... bài y như copy xong rồi cải tiến ýkkkkkkkkkkkkk

Bình luận (0)
DC
Xem chi tiết
NQ
31 tháng 3 2015 lúc 21:16

                                         Giải

Ta có\(A=\frac{2002}{2001}+\frac{2001}{2002}\)và \(B=\frac{2000}{2001}+\frac{2001}{2002}\)

Ta nhận xét thấy A và B cùng có chung 1 số hạng là \(\frac{2001}{2002}\)

Nên ta chỉ so sánh \(\frac{2002}{2001}\)và \(\frac{2000}{2001}\)ta so sánh 2 phân số đó với 1

Vì 2002>2001 nên \(\frac{2002}{2001}\)> 1

Vì 2000<2001 nên \(\frac{2000}{2001}\)<1

\(\Leftrightarrow\)\(\frac{2002}{2001}>\frac{2000}{2001}\)

\(\Leftrightarrow\)\(\frac{2002}{2001}+\frac{2001}{2002}>\frac{2000}{2001}+\frac{2001}{2002}\)

Vậy A>B

Bình luận (0)
NN
Xem chi tiết
NG
Xem chi tiết
BN
28 tháng 4 2015 lúc 21:22

Ta có 

B= 2000/2001+2002 + 2001/2001+2002.                                                           Mà 2000/2001+2002 < 2000/2001 và 2001/2001+2002 < 2001/2002.              Nên 2000/2001+2002 + 2001/ 2001+2002 < 2000/2001 + 2001/2002.       Hay 2000+2001/ 2001+2002 < 2000/2001 + 2001/2002                             Suy ra B < A

 

Bình luận (0)
NA
28 tháng 4 2015 lúc 20:57

A>B

CÁC BẠN NHỚ **** CHO MÌNH NHA

Bình luận (0)
TT
19 tháng 4 2017 lúc 19:02

ta có

B = 2000/20001 + 20002 + 2001/2001+2002

mà 2000/2001+2002<2000/2001

và 2001/2001+2002<2001/2002

nên 2000+2001/2001+2002<2000/2001+2001/2002

hay 2000+2001/2001+2002<2000/2001+2001/2002

Bình luận (0)