: Giá trị nhỏ nhất của biểu thức 5x2 +2y2 +4xy - 2x +4y + 2022 là
A. 2022 B. 2021 C. 2020 C. 2021
giá trị nhỏ nhất của biểu thức B = (2x+5/2)^2022 + 2021 là
A. 5/2 B. 2021 C.5 D.-5
Ta có:
\(B=\left(2x+\dfrac{5}{2}\right)^{2022}+2021\)
\(\ge0+2021=2021\)
Vậy \(B_{MIN}=2021\), đạt được khi và chỉ khi \(2x+\dfrac{5}{2}=0\Leftrightarrow2x=-\dfrac{5}{2}\Leftrightarrow x=-\dfrac{5}{4}\)
Câu 6. Giá trị nhỏ nhất của biểu thức A = (x – y)2 + (x – 1)2 + (y + 2)2 + 2021 là
A. 2021 B. 2022 C. 2023 D. 2024
Dẫu '' = '' xảy ra khi và chỉ khi ( x - y )2 + (x – 1)2 + (y + 2)2 = 0
cho mình hỏi với ạ
1.Tìm x,y để giá trì M = (x-2021)^2022+(2021-y)^2020 bằng 0
2.Chứng minh biểu thức A = (2x-1)^2 + 4x^4y^2 + 2021 luôn nhận giá trị dường với mọi x,y
1: \(M=0\)
mà \(\left\{{}\begin{matrix}\left(x-2021\right)^{2022}>=0\\\left(2021-y\right)^{2020}>=0\end{matrix}\right.\)
nên x-2021=0 và 2021-y=0
=>x=2021 và y=2021
Tìm giá trị nhỏ nhất của: A = là:
A.
2 tại x = 2021
B.
-1 tại x = 2020
C.
2020 tại x = 2021
D.
1 tại x = 2022
Tìm giá trị nhỏ nhất của các biểu thức sau :
a) A=x^2 + 2.y^2 +3.
b)B= /x-2022/+/x-2021/+/x-2020/
Bài 1: a)Tìm giá trị lớn nhất của biểu thức:
M = 2022 - |x - 9|
b)Tìm giá trị nhỏ nhất của biểu thức:
N = |x - 2021| - (- 2022)
a) \(M=2022-\left|x-9\right|\le2022\)
\(maxM=2022\Leftrightarrow x=9\)
b) \(N=\left|x-2021\right|+2022\ge2022\)
\(minN=2022\Leftrightarrow x=2021\)
Cho biểu thức A=(x+5)^2022+|y-2021|+2022.Tìm giá trị nhỏ nhất của A.
A = (x+5)2022 + | y - 2021| + 2022
vì ( x+5)2022 \(\ge\) 0;
|y-2021| \(\ge\) 0
2022 = 2022
Cộng vế với vế ta được : A = (x+5)2022+|y-2021|+2022\(\ge\) 2022
Vậy A(min) = 2022 dấu bằng xảy ra khi : \(\left\{{}\begin{matrix}x+5=0\\y-2021=0\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}x=-5\\y=2021\end{matrix}\right.\)
Giá trị của biểu thức Q - x^2 - y^2 với x= 1012 và y= 1011
A. 2022 B.2020 C.2023 D.2021
tìm giá trị nhỏ nhất của biểu thức M=|x-2021|+|x-2022|
\(M=\left|x-2021\right|+\left|2022-x\right|\ge\left|x-2021+2022-x\right|=1\\ M_{min}=1\Leftrightarrow\left(x-2021\right)\left(2022-x\right)\ge0\Leftrightarrow2021\le x\le2022\)