tinh nhanh
N=\(\frac{1}{1.3}+\frac{3}{13.23}+\frac{3}{23.33}+...+\frac{3}{2003.2306}\)
\(\frac{1}{13}+\frac{3}{13.23}+\frac{3}{23.33}+.......................+\frac{3}{1993.2003}\)
\(=\frac{3}{3.13}+\frac{3}{13.23}+...+\frac{3}{1993.2003}\)
\(=\frac{1}{10}.\left(1-\frac{3}{13}+\frac{3}{13}-\frac{3}{23}+...+\frac{3}{1993}-\frac{3}{2003}\right)\)
\(=\frac{1}{10}.\left(1-\frac{3}{2003}\right)\)
\(=\frac{1}{10}.\frac{2000}{2003}\)
\(=\frac{200}{2003}\)
Đặt \(A=\frac{1}{13}+\frac{3}{13.23}+\frac{3}{23.33}+...+\frac{3}{1993.2003}\)
\(\Rightarrow A=\frac{3}{3.13}+\frac{3}{13.23}+\frac{3}{23.33}+...+\frac{3}{1993.2003}\)
\(\Rightarrow A=3\left(\frac{1}{3.13}+\frac{1}{13.23}+\frac{1}{23.33}+...+\frac{1}{1993.2003}\right)\)
\(\Rightarrow A=\frac{3}{10}\left(\frac{10}{3.13}+\frac{10}{13.23}+\frac{10}{23.33}+...+\frac{10}{1993.2003}\right)\)
\(\Rightarrow A=\frac{3}{10}\left(\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+\frac{1}{23}-\frac{1}{33}+...+\frac{1}{1993}-\frac{1}{2003}\right)\)
\(\Rightarrow A=\frac{3}{10}\left(\frac{1}{3}-\frac{1}{2003}\right)\)
\(\Rightarrow A=\frac{3}{10}.\left(\frac{2003}{6009}-\frac{3}{6009}\right)\)
\(\Rightarrow A=\frac{3}{10}.\frac{2000}{6009}\)
\(\Rightarrow A=\frac{200}{2003}\)
tính nhanh:
\(\frac{1}{13}\)+\(\frac{3}{13.23}\)+\(\frac{3}{23.33}\)+...+\(\frac{3}{1993.2003}\)
Giúp mik nhoa, mik đang cần gấp lắm ^-^
\(\frac{1}{13}+\frac{3}{13\cdot23}+\frac{3}{23\cdot33}+...+\frac{3}{1993\cdot2003}\)
\(=\frac{1}{13}+\left[\frac{3}{13\cdot23}+\frac{3}{23\cdot33}+...+\frac{3}{1993\cdot2003}\right]\)
\(=\frac{1}{13}+\left[\frac{3}{10}\left[\frac{1}{13\cdot23}+\frac{1}{23\cdot33}+...+\frac{1}{1993\cdot2003}\right]\right]\)
\(=\frac{1}{13}+\left[\frac{3}{10}\left[\frac{1}{13}-\frac{1}{23}+\frac{1}{23}-\frac{1}{33}+...+\frac{1}{1993}-\frac{1}{2003}\right]\right]\)
\(=\frac{1}{13}+\left[\frac{3}{10}\left[\frac{1}{13}-\frac{1}{2003}\right]\right]\)
\(=\frac{1}{13}+\left[\frac{3}{10}\cdot\frac{1990}{26039}\right]\)
\(=\frac{1}{13}+\frac{597}{26039}\)
\(=\frac{200}{2003}\)
Đặt A= 1/13 + 3/13.23 + 3/ 23.33 + ... + 3/1993.2003
A- 1/13 = 3/13.23 + 3/ 23.33 + ... + 3/1993.2003
10/3 ( A-1/3) = 10/3. (3/13.23 + 3/ 23.33 + ... + 3/1993.2003)
10/3A - 10/9 = 10/13.23 + 10/ 23.33 + ... + 10/1993.2003
10/3A - 10/9 = 1/13 - 1/23 + 1/23 - 1/33 +...+ 1/1993- 1/2003
10/3A = 1/13 - 1/2003 + 10/9
10/3 A= ?
đến đây bn tự làm nha
10/3A - 10/9 = 1/13
Ta loại \(\frac{1}{13}\)ra khỏi biểu thức để dễ tính hơn, sau đó cộng vào.
Gọi A là biểu thức \(\frac{3}{13.23}+\frac{3}{23.33}+...+\frac{3}{1993.2003}\)
Gấp A lên \(\frac{10}{3}\)lần, ta có :
\(A\times\frac{10}{3}=\frac{10}{3}\times\left(\frac{3}{13.23}+\frac{3}{23.33}+...+\frac{3}{1993.2003}\right)\)
\(A\times\frac{10}{3}=\frac{10}{13.23}+\frac{10}{23.33}+...+\frac{10}{1993.2003}\)
\(A\times\frac{10}{3}=\frac{1}{13}-\frac{1}{23}+\frac{1}{23}-\frac{1}{33}+...+\frac{1}{1993}-\frac{1}{2003}\)
\(A\times\frac{10}{3}=\frac{1}{13}-\frac{1}{2003}\)
\(A\times\frac{10}{3}=\frac{1990}{26039}\)
\(A=\frac{1990}{26039}\div\frac{10}{3}\)
\(A=\frac{597}{26039}\)
Biểu thức trên = \(\frac{597}{26039}+\frac{1}{13}=\frac{200}{2003}\)
Bài 3 Thực hiện phép tính một cách hợp lí
N=\(\frac{1}{13}+\frac{3}{13.23}+\frac{3}{23.33}+...+\frac{3}{1993.2003}\)
\(N=\frac{1}{13}+\frac{3}{13.23}+\frac{3}{23.33}+...+\frac{3}{1993.2003}\)
\(=\frac{3}{3.13}+\frac{3}{13.23}+\frac{3}{23.33}+...+\frac{3}{1993.2003}\)
\(=\frac{3}{10}\left(\frac{10}{3.13}+\frac{10}{13.23}+\frac{10}{23.33}+..+\frac{10}{1993.2003}\right)\)
\(=\frac{3}{10}\left(\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+\frac{1}{23}-\frac{1}{33}+...+\frac{1}{1993}-\frac{1}{2003}\right)\)
\(=\frac{3}{10}\left(\frac{1}{3}-\frac{1}{2003}\right)=\frac{3}{10}.\frac{2000}{6009}=\frac{200}{2003}\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\frac{3}{13.23}\)\(+\)\(\frac{3}{23.33}\)\(+...+\)\(\frac{3}{1993.2003}\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\left(\frac{3}{13.23}+\frac{3}{23.33}+...+\frac{3}{1993.2003}\right)\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\left[\frac{3}{10}\left(\frac{1}{13.23}+\frac{1}{23.33}+...+\frac{1}{1993.2003}\right)\right]\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\left[\frac{3}{10}\left(\frac{1}{13}-\frac{1}{23}+\frac{1}{23}-\frac{1}{33}+...+\frac{1}{1993}-\frac{1}{2003}\right)\right]\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\left[\frac{3}{10}\left(\frac{1}{13}-\frac{1}{2003}\right)\right]\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\left[\frac{3}{10}.\frac{1990}{26039}\right]\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\frac{597}{26039}\)
\(N=\)\(\frac{200}{2003}\)
dễ vãi lồn làm làm đéo j phá đê
A=\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{98}\right)\left(1+\frac{1}{99}\right)\)
B=\(\frac{7}{3.13}+\frac{7}{13.23}+\frac{7}{23.33}+\frac{7}{33.43}+\frac{7}{43.53}+\frac{7}{53.63}\)
\(B=\frac{7}{3.13}+\frac{7}{13.23}+...+\frac{7}{53.63}\)
\(B=10.\left(\frac{1}{3.13}+\frac{1}{13.23}+....+\frac{1}{53.63}\right)\)
\(B=10.\left(\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+...+\frac{1}{53}+\frac{1}{63}\right)\)
\(B=10.\left(\frac{1}{3}-\frac{1}{63}\right)\)
\(B=10.\frac{20}{63}\)
\(B=\frac{200}{63}\)
Tính \(\frac{7}{3.13}+\frac{7}{13.23}+\frac{7}{23.33}+\frac{7}{33.43}\)
\(\frac{7}{3.13}+\frac{7}{13.23}+\frac{7}{23.33}+\frac{7}{33.43}\)
\(=\frac{7}{10}\left(\frac{10}{3.13}+\frac{10}{13.23}+\frac{10}{23.33}+\frac{10}{33.43}\right)\)
\(=\frac{7}{10}\left(\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+\frac{1}{23}-\frac{1}{33}+\frac{1}{33}-\frac{1}{43}\right)\)
\(=\frac{7}{10}\left(\frac{1}{3}-\frac{1}{43}\right)\)
\(=\frac{7}{10}\left(\frac{43}{129}-\frac{3}{129}\right)\)
\(=\frac{7}{10}.\frac{40}{129}\)
\(=\frac{28}{129}\)
mk làm đúng rồi nha, ko tin bấm thử máy tính
7/3.13 + 7/13.23 + 7/23.33 + 7/33.43
= 7/10.(1/3-1/13+1/13-1/23+1/23-1/33+1/33-1/43)
= 7/10.(1/3-1/43)
= 7/10 . 14/43
= 49/215
Đặt A ta có :
\(A=\frac{7}{3\times13}+\frac{7}{13\times23}+...+\frac{7}{53\times56}\)
\(A=\frac{7}{10}\times\left(\frac{10}{3\times13}+\frac{10}{13\times23}+...+\frac{10}{53\times56}\right)\)
\(A=\frac{7}{10}\times\left(\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+...+\frac{1}{53}-\frac{1}{63}\right)\)
\(A=\frac{7}{10}\times\left(\frac{1}{3}-\frac{1}{63}\right)\)
\(A=\frac{7}{10}\times\frac{20}{63}\)
\(\Rightarrow A=\frac{2}{9}\)
a)Tính\(\frac{\left(17\frac{8}{19}-16\frac{9}{18}\right)\left(17,5+16\frac{17}{51}-32\frac{15}{22}\right)}{\frac{7}{3.13}+\frac{7}{13.23}+\frac{7}{23.33}}\)
b) Chứng tò rằng:\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
phần a dễ bạn tự làm đi tử thì bạn tính như bình thường còn mẫu thì:7.(\(\frac{1}{3.13}\)+\(\frac{1}{13.23}\)+\(\frac{1}{23.33}\))
\(\frac{7}{10}\).(\(\frac{1}{3}\)-\(\frac{1}{33}\))=\(\frac{7}{33}\)
b)(1+1/3+1/5+..+1/199)-(1/2+1/4+...+1/200)
(1+1/2+1/3+...+1/199+1/200)-(1/2+1/2+1/4+1/4+...+1/200+1/200)
=1+1/2+1/3+...+1/199+1/200-(1+1/2+1/3+...+1/100)
=1/101+1/102+...+1/200
https://olm.vn/hoi-dap/question/60726.html
\(A=\frac{7}{3.13}+\frac{7}{13.23}+\frac{7}{23.33}+.......+\frac{7}{53.63}\)
ƯU TIÊN DƯỚI 25 NHÁ
\(A=\frac{7}{3.13}+\frac{7}{13.23}+...+\frac{7}{53.63}\)
\(A=7.\left(\frac{1}{3.13}+\frac{1}{13.23}+...+\frac{1}{53.63}\right)\)
\(10A=7.\left(\frac{10}{3.13}+\frac{10}{13.23}+...+\frac{10}{53.63}\right)\)
\(10A=7.\left(\frac{1}{3}-\frac{1}{63}\right)\)
\(10A=7.\frac{20}{63}\)
\(10A=\frac{20}{9}\)
\(A=\frac{20}{9}:10\)
\(A=\frac{20}{9}.\frac{1}{10}\)
\(A=\frac{2}{9}\)
Vậy A=\(\frac{2}{9}\)
Chúc bạn học tốt~
A = \(\frac{7}{3.13}\)\(+\)\(\frac{7}{13.23}\)\(+\)\(\frac{7}{23.33}\)\(+\).......... \(+\)\(\frac{7}{53.63}\)
\(\Rightarrow\)A = 7 . (\(\frac{1}{3.13}\)\(+\)\(\frac{1}{13.23}\)\(+\)\(\frac{1}{23.33}\)\(+\)...... \(\frac{1}{53.63}\))
\(\Rightarrow\)A = \(\frac{1}{10}\). 7 . ( \(\frac{1}{3}\)\(-\)\(\frac{1}{13}\)\(+\)\(\frac{1}{13}\)\(-\)\(\frac{1}{23}\)\(+\)\(\frac{1}{23}\)\(-\)\(\frac{1}{33}\)\(+\)....... \(+\)\(\frac{1}{53}\)\(-\)\(\frac{1}{63}\))
\(\Rightarrow\)A = \(\frac{7}{10}\). ( \(\frac{1}{3}\)\(-\)\(\frac{1}{63}\))
\(\Rightarrow\)A = \(\frac{7}{10}\). \(\frac{20}{63}\)
\(\Rightarrow\)A = \(\frac{2}{9}\)
Chúc các anh em học tốt !!!
A=1/3-1/13+1/13-1/23+1/23-1/33+.........+1/53-1/63
=1/3-1/63
=21/63-1/63
=20/63
tính S bằng 1/1.3+3/13.23+3/23.33+...+3/2013.2023
Tính S=\(\frac{5}{3.13}\)+ \(\frac{5}{13.23}\)+ \(\frac{5}{23.33}\)+ ....+ \(\frac{5}{83.33}\)
Nhanh! Khẩn cấp! Mai thì tớ thi rồi! Giải nhanh tớ tick cho!
\(S=\frac{5}{3.13}+\frac{5}{13.23}+.....+\frac{5}{83.93}\)
\(2S=\frac{2.5}{3.13}+\frac{2.5}{13.23}+....+\frac{2.5}{83.93}\)
\(2S=\frac{10}{3.13}+\frac{10}{13.23}+.....+\frac{10}{83.93}\)
\(2S=\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+....+\frac{1}{83}-\frac{1}{93}\)
\(2S=\frac{1}{3}-\frac{1}{93}=\frac{30}{93}\)
\(S=\frac{30}{93}.\frac{1}{2}=\frac{15}{93}\)
Sửa đề:
\(S=\frac{5}{3.13}+\frac{5}{13.23}+.....+\frac{5}{83.93}\)
\(S=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+....+\frac{1}{83}-\frac{1}{93}\right)\)
\(S=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{93}\right)\)
\(S=\frac{1}{2}.\left(\frac{31}{93}-\frac{1}{93}\right)\)
\(S=\frac{1}{2}.\frac{10}{31}\)
\(S=\frac{5}{31}\)