Tim GTNN cua cac bieu thuc sau
A = x2 + 3x + 7
B = ( x - 2 ) . ( x - 5 ) . ( x2 - 7x - 10 )
tim gia tri lon nhat cua bieu thuc :
a) C= 5+ 15/ 4 I 3x+7 I +3
b) D= 2 I 7x+5I +11/ I 7x+5I +4
tim GTNN cua bieu thuc :
a) A= I x+1I + 1,7
b) B= I x-2/3I +3/7
c) C= 5+ -8/ 4x I5x+7I 24
TIM GTLN HOAC GTNN CUA CAC BIEU THUC SAU
B=5-2Z^2
C=/X-3/+/5-X/
B = 5 - 2z2
Vì 2z2 ≥ 0 => B = 5 - 2z2 ≤ 5
Dấu "=" xảy ra khi 2z2 = 0 => z = 0
Vậy Bmax là 5 tại z = 0
C = |x - 3| + |5 - x| ≥ |x - 3 + 5 - x| = 2
Dấu "=" xảy ra khi (x - 3)(5 - x) ≥ 0 <=> 5 ≥ x ≥ 3
Vậy Cmin = 2 tại 5 ≥ x ≥ 3
Tim GTNN cua cac bieu thuc:
a,A=|x-1|+|x-2|+|x-3|+|x-4|+...+|x-10|
b,P=|3x-6|+|y2+1|+2015
Cach lam nua nhe
Lam nhanh minh se tick
Tim GTNN cua cac bieu thuc:
a,A=|x-1|+|x-2|+|x-3|+|x-4|+...+|x-10|
b,P=|3x-6|+|y2+1|+2015
Cach lam nua nhe
Lam nhanh minh se tick
b, P = 2016 tại x = 2 và y = 0
cho cac so thuc duing x,y thoa man x+y<=3.Tim GTNN cua bieu thuc : P=1/5xy + 5/x+2y+5
\(P=\frac{1}{5xy}+\frac{xy}{20}+\frac{5}{x+2y+5}+\frac{x+2y+5}{20}-\frac{xy}{20}-\frac{x+2y+5}{20}\)
\(\ge2\sqrt{\frac{1}{5xy}.\frac{xy}{20}}+2.\sqrt{\frac{5}{x+2y+5}.\frac{x+2y+5}{20}}-\frac{x\left(3-x\right)+x+2\left(3-x\right)+5}{20}\)
\(=2.\frac{1}{10}+2.\frac{1}{2}-\frac{-x^2+2x+11}{20}\)
\(=\frac{x^2-2x+1}{20}+\frac{3}{5}=\frac{\left(x-1\right)^2}{20}+\frac{3}{5}\ge\frac{3}{5}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{1}{5xy}=\frac{xy}{20}\\\frac{5}{x+2y+5}=\frac{x+2y+5}{20}\\\left(x-1\right)^2=0,x+y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\x+2y+5=10\\x=1,x+y=3\end{cases}\Leftrightarrow}x=1,y=2\)
Vậy min P=3/5 khi x=1, y=2
Em co cach nay ngan gon hon, cac ban co the tham khao
P=\(\frac{1}{5xy}\) + \(\frac{5}{x+2y+5}\)=\(\frac{1}{5xy}\)+\(\frac{25}{5\left(x+2y+5\right)}\)
= \(\frac{1^2}{5xy}\)+\(\frac{5^2}{5\left(x+2y+5\right)}\)
\(\geq\) \(\frac{\left(1+5\right)^{^2}}{5xy+5\left(x+2y+5\right)}\)
=\(\frac{36}{5\left(xy+x+2y+2+3\right)}\)
=\(\frac{36}{5\left(\left(x+2\right)\left(y+1\right)+3\right)}\)
=\(\frac{36}{5\left(\frac{\left(x+y+3\right)^2}{4}+3\right)}\) (do \((x+2)(y+1) \leq \frac {(x+y+3)^2}{4}\) )
=\(\frac{36}{5\left(\frac{\left(3+3\right)^2}{4}+3\right)}\) (do \(x+y \leq 3\) )
=\(\frac{3}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{1}{5xy}=\frac{1}{x+2y+5}\\x+2=y+1\\x+y=3\end{cases}}\Leftrightarrow x=2,y=1\)
Vậy GTNN của P là 3/5 khi và chỉ khi x=2,y=1
1) Tim GTNN cua bieu thuc sau
a) M = x^2 + 4x + 9
b) N = x^2 - 20x +101
5) Tim GTLN cua bieu thuc sau
a) C = -y^2 + 6y -15
b) B = -x^2 + 9x - 12
c) D = 3x - x^2
Bài 1:
a: \(M=x^2+4x+4+5=\left(x+2\right)^2+5>=5\)
Dấu '=' xảy ra khi x=-2
b: \(N=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)
Dấu '=' xảy ra khi x=10
tim gia tri lon nhat cua bieu thuc :
b) D= 2 I 7x+5I +11/ I 7x+5I +4
tim GTNN cua bieu thuc :
c) C= 5+ -8/ 4x I5x+7I 24
tim gia tri lon nhat cua bieu thuc :
b) D= 2 I 7x+5I +11/ I 7x+5I +4
tim GTNN cua bieu thuc :
c) C= 5+ -8/ 4x I5x+7I 24
tim gia tri tuyet doi lon nhat cua cac bieu thuc sau:
a,M=-|5/3-x|.
b,N=9-|x-1/10|.
P=10-|3x-2|-|3y+4|