tìm x
a/2x-45=(-4x)+15
b/34-x=9+7x
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
B1 CMR biểu thức sau luôn dương với mọi x
A=x^2-6x+15
B=4x^2+4x+7
B2 CMR biểu thức sau luôn âm với mọi x
A=-9x^2+6x-2021
B=-2x^2+2x-7
B3 Tìm x
A) (x-2)^2 - (3-4x)^2 +15x^2=0
B) (x-3)(x^2+3x+9)-x(x+2)(2-x)=0
Bài 1
\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)
\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)
Bài 2
\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)
Tìm x
a,(7x+4)^2-(7x+4)(7x-4)=0
b, 5( x + 3 )( x - 3 ) + ( 2x + 3 )^2+(x-6)^=10
c, (x + 1)^3 + (x – 2)^3 – 2x^2 (x – 1,5) = 3
d,( x + 2)(x^2 – 2x + 4)(x – 2)(x^2 + 2x + 4) = – 65
e, 4x^2 + 4x – 5 = 2
f,16x^2 – 9(x + 1)^2 = 0
Các bạn giúp mình vs mai mình phải nộp rùii
f: Ta có: \(16x^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(4x-3x-3\right)\left(4x+3x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(7x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{7}\end{matrix}\right.\)
Tìm x
a)x.(5-2x)-2x.(1-x)=15
b)(3x+2)2+(1+3x).(1-3x)=2
a) \(x\left(5-2x\right)-2x\left(1-x\right)=15\\ \Leftrightarrow5x-2x^2-2x+2x^2=15\\ \Leftrightarrow3x=15\\ \Leftrightarrow x=5\)
Vậy x = 5 là nghiệm của pt.
b) \(\left(3x+2\right)^2+\left(1+3x\right)\left(1-3x\right)=2\\ \Leftrightarrow\left(9x^2+12x+4\right)+1-9x^2=2\\ \Leftrightarrow12x+5=2\\ \Leftrightarrow12x=-3\\ \Leftrightarrow x=\dfrac{-1}{4}\)
Vậy \(x=-\dfrac{1}{4}\) là nghiệm của pt.
a)x.(5-2x)-2x.(1-x)=15
x [ 5 - 2x -2.(1-x) ] = 15
x ( 5 - 2x -2 + 2x ) =15
x . 3 =15
x = 5
b)(3x+2)2+(1+3x).(1-3x)=2
9x2+12x+4+1-9x2=2
12x + 5 = 2
12x = -3
x = -1/4
a, (4x+1)(x-3)-(x-7)(4x-1)=15
b, (x+1)(x2-x+1)-x(x2-3)=4
c, (x-3)(x2+3x+9)+x(5-x2)=6x
d, (5x-1)(5x+1)=25x2-7x+15
\(a,\left(4x+1\right)\left(x-3\right)-\left(x-7\right)\left(4x-1\right)=15\\ \Leftrightarrow4x^2+x-12x-3-\left(4x^2-28x-x+7\right)-15=0\\ \Leftrightarrow4x^2-11x-3-4x^2+29x-7-15=0\\ \Leftrightarrow18x=25\\ \Leftrightarrow x=\dfrac{25}{18}\)
Vậy \(x=\dfrac{25}{18}\)
\(b,\left(x+1\right)\left(x^2-x+1\right)-x\left(x^2-3\right)=4\\ \Leftrightarrow x^3+1-x^3+3x-4=0\\ \Leftrightarrow3x-3=0\\ \Leftrightarrow x=1\)
Vậy \(x=1\)
\(c,\left(x-3\right)\left(x^2+3x+9\right)+x\left(5-x^2\right)-6x=0\\ \Leftrightarrow x^3-27+5x-x^3-6x=0\\ \Leftrightarrow-x-27=0\\ \Leftrightarrow x=-27\)
Vậy \(x=-27\)
\(d,\left(5x-1\right)\left(5x+1\right)=25x^2-7x+15\\ \Leftrightarrow25x^2-1-25x^2+7x-15=0\\ \Leftrightarrow7x-16=0\\ \Leftrightarrow x=\dfrac{16}{7}\)
Vậy \(x=\dfrac{16}{7}\)
2.tìm x
a)\(\sqrt{x^2-6x+9}\)
b)\(\sqrt{x^2-2x+1}\)
c)\(\sqrt{4x+12}-3\sqrt{x+3}+7\sqrt{9x+27}=20\)
d)\(\sqrt{4x+20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=6\)
a) \(\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x^2-2.x.3+3^2\right)}\)
\(=\sqrt{\left(x-3\right)^2}\) ≥0,∀x
⇒x∈\(R\)
b) \(\sqrt{x^2-2x+1}\)
\(=\sqrt{\left(x^2-2.x.1+1^2\right)}\)
\(=\sqrt{\left(x-1\right)^2}\) ≥0,∀x
⇒x∈\(R\)
Tìm x, biết:
a) 4x(x + 1) + (3 – 2x)(3 + 2x) = 15
b) 3x(x – 20012) – x + 20012 = 0
`a)4x(x+1)+(3-2x)(3+2x)=15`
`<=>4x^2+4x+9-4x^2=15`
`<=>4x=6`
`<=>x=3/2`
Vậy `S={3/2}`
`b)3x(x-20012)-x+20012=0`
`<=>3x(x-20012)-(x-20012)=0`
`<=>(x-20012)(3x-1)=0`
`<=>` $\left[\begin{matrix} x=20012\\ x=\dfrac{1}{3}\end{matrix}\right.$
Vậy `S={1/3;20012}`
a) 4x(x + 1) + (3 – 2x)(3 + 2x) = 15
⇔4x2 + 4x + (9 – 4x2) = 15
⇔ 4x2 + 4x + 9 – 4x2 = 15
⇔4x = 15 – 9
⇔x=1,5
b)3x(x – 20012) – x + 20012 = 0
⇔3x(x – 20012) – (x – 20012) = 0
⇔(x – 20012)(3x – 1) = 0
⇔x – 20012 = 0 hay 3x – 1 = 0
⇔x = 20012 hoặc x = \(\dfrac{1}{2}\)
tìm x
a,-2x-(x-17)=34-(-x+25)
b,17x-(-16x-37)=2x+34
c,-2x-3.(x-7)=34-2(-x+25)
d,17x+3.(-16x-37)=2x+43-4x
e,-2x+3.{12-x[3x-(20+2x)-4x]+1}=45
tìm x
a, \(x^2-4x+\dfrac{1}{4}\)
b, \(8x^2-25\)
c, \(x^2+7x=8\)
d, \(x^3-3x=-27+9x\)
e, x(x-3)-7x=-21
f, \(x^3-2x^2+x-2=0\)
g, \(x^2-4x=-4\)
h, \(x^3-x^2+x=-1\)
\(a,=x^2-4x+4-\dfrac{15}{4}=\left(x-2\right)^2-\dfrac{15}{4}=\left(x-2-\dfrac{\sqrt{15}}{2}\right)\left(x-2+\dfrac{\sqrt{15}}{2}\right)\\ b,=?\\ c,\Rightarrow x^2+7x-8=0\\ \Rightarrow\left(x+8\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-8\\x=1\end{matrix}\right.\\ d,Sửa:x^3-3x^2=-27+9x\\ \Rightarrow x^3-3x^2+9x-27=0\\ \Rightarrow x^2\left(x-3\right)+9\left(x-3\right)=0\\ \Rightarrow\left(x^2+9\right)\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-9\left(vô.lí\right)\\x=3\end{matrix}\right.\\ \Rightarrow x=3\\ e,\Rightarrow x\left(x-3\right)-7x+21=0\\ \Rightarrow x\left(x-3\right)-7\left(x-3\right)=0\\ \Rightarrow\left(x-7\right)\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\\ f,\Rightarrow x^2\left(x-2\right)+\left(x-2\right)=0\\ \Rightarrow\left(x^2+1\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=2\end{matrix}\right.\\ \Rightarrow x=2\)
\(g,\Rightarrow x^2-4x+4=0\\ \Rightarrow\left(x-2\right)^2=0\\ \Rightarrow x=2\\ h,Sửa:x^3-x^2+x=1\\ \Rightarrow x^2\left(x-1\right)+\left(x-1\right)=0\\ \Rightarrow\left(x^2+1\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=1\end{matrix}\right.\\ \Rightarrow x=1\)
Tìm x :
a, (2x-5).(x+2)-2x.(x-1)=15
b, (5-2x).(2x+7)=4\(x^2\)-25
c, x.(4x-5)-(2x+1)\(^2\)=0
M.n giúp em với
a: ta có: \(\left(2x-5\right)\left(x+2\right)-2x\left(x-1\right)=15\)
\(\Leftrightarrow2x^2+4x-5x-10-2x^2+2x=15\)
\(\Leftrightarrow x=25\)
b: Ta có: \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)
\(\Leftrightarrow4x^2-25+\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5+2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-3\end{matrix}\right.\)
c: Ta có: \(x\left(4x-5\right)-\left(2x+1\right)^2=0\)
\(\Leftrightarrow4x^2-5x-4x^2-4x-1=0\)
\(\Leftrightarrow-9x=1\)
hay \(x=-\dfrac{1}{9}\)