Tì giá trị nhỏ nhất của biểu thức A = 5x2+9x2-12xy+24x-48y+82
tìm giá trị nhỏ nhất của biểu thức A \(=5x^2+9y^2-12xy+24x+48y+81\)
\(A=5x^2+9y^2-12xy+24x-48y+81\)
\(A=4x^2+x^2+9y^2-12xy+32x-48y-8x+16+1+64\)
\(A=(4x^2+9y^2+64-12xy+32x-48y)+\left(x^2-8x+16\right)+1\)
\(A=[\left(2x\right)^2+\left(3y\right)^2+\left(8\right)^2-2.2x.3y-2.3y.8+2.2x.8]+\left(x^2-8x+16\right)+1\)
\(A=\left(2x-3y+8\right)^2\left(x-4\right)^2+1\)
\(Do\) \(\left(2x-3y+8\right)^2\ge0\) \(và\) \(\left(x-4\right)^2\ge0\)
\(\Rightarrow A_{min}=1\)
tim giá trị nhỏ nhất của các biểu thức sau
a)x^2+2y^2-2xy+8y+7
b)5x^2+y^2+2xy-12x-18
c)3x^2+4y^2+4xy+2x-4y+26
d)5x^2+9y^2-12xy+24x-48y+82
a) x2 + 2y2 - 2xy + 8y + 7
= x2 - 2xy + y2 + y2 + 8y + 16 - 9
= (x - y)2 + (y + 4)2 - 9
GTNN của biểu thức trên là -9
b) 5x2 + y2 + 2xy - 12x - 18
= x2 + 2xy + y2 + 4x2 - 12x + 9 - 27
= (x + y)2 + (2x - 3)2 - 27
GTNN của biểu thức trên là -27
c) 3x2 + 4y2 + 4xy + 2x - 4y + 26
= 2x2 + 4xy + 2y2 + x2 + 2x + 1 + 2y2 - 4y + 2 + 23
= (\(\sqrt{2}\)x + \(\sqrt{2}\)y)2 + (x + 1)2 + 23
GTNN của biểu thức trên là 23
Câu d mình ko biết làm
d) D= 5x^2+9y^2-12xy+24x-48y+82
\(=4x^2+9y^2+64-12xy+32x-48y+x^2-8x+16+2\)
\(=\left[\left(2x\right)^2+\left(3y\right)^2+8^2-2.2x.3y+2.2x.8-2.3y.8\right]+\left(x^2-2.x.4+4^2\right)+2\)
\(=\left(2x-3y+8\right)^2+\left(x-4\right)^2+2\ge2\)
Vậy GTNN của D là 2 tại \(\hept{\begin{cases}\left(2x-3y+8\right)^2=0\\\left(x-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-3y+8=0\\x-4=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}}\)
Tìm giá trị nhỏ nhất của của : \(P=5x^2+9y^2-12xy+24x-48y+82\)
P = 5x2+9y2-12xy+24x-48y+82=(2x - 3y + 8)² + x² - 8x + 16 + 2 = (2x - 3y + 8)² + (x - 4)² + 2
=> min P = 2
dấu = xảy ra <=> 2x - 3y + 8 = 0 và x = 4 => y = \(\dfrac{16}{3}\)
vậy min P = 2
dấu = xảy ra <=> x = 4, y = \(\dfrac{16}{3}\)
\(P=\left(4x^2-12xy+9y^2\right)+16\left(2x-3y\right)+64+\left(x^2-8x+16\right)+2\)
Bạn tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/tim-gia-tri-nho-nhat-cua-cac-bieu-thuc-sau-a-5x2-9y2-12xy-24x-48y-82.8874425329809
tìm giá trị lớn nhất của biểu thức sau :
a)-3x2 - 16y2 - 8xy+5x+2
tìm giá trị nhỏ nhất của biểu thức sau:
a)3x2 +4y2+4xy+2x-4y+26
b) 5x2+9y2-12xy+24x-48y+82
giúp với đang cần gấp, hứa sẽ tick
BT1: Tìm Giá Trị nhỏ nhất của biểu thức:
A) S=5X2+9Y2-12XY+24X-48Y+2014
B) S=X2+Y2-XY+3X+3Y+20
BT2: cho X+2XY+2Y+8
Tìm GTNN của A= X2+4Y2
trước tiên bạn nên đưa về dạng tổng hai bình phương
tìm giá trị nhỏ nhất của
S=5x2 +9y2-12xy+24x-48y+2080
\(S=4x^2-12xy+9y^2+32x-48y+64+x^2-8x+16+2000\)
\(S=\left(2x-3y\right)^2+16\left(2x-3y\right)+64+\left(x^2+8x+16\right)+2000\)
\(S=\left(2x-3y+8\right)^{^2}+\left(x-4\right)^2+2000\ge2000\)
MinS = 2000 khi x = 4 và y = 16/3
\(S=5x^2+9y^2-12xy+24x-48y+2028\)
\(=\left(9y^2-12xy-48y\right)+5x^2+24x+2028\)
\(=\left[\left(3y\right)^2-2.3y.\left(2x+8\right)+\left(2x+8\right)^2\right]+5x^2+24x+2028-\left(2x+8\right)^2\)\(=\left(3y-2x-8\right)^2+5x^2+24x+2028-4x^2-32x-64\)\(=\left(3y-2x-8\right)^2+\left(x^2-8x+16\right)+1948\)
\(=\left(3y-2x-8\right)^2+\left(x-4\right)^2+1948\ge1948\forall x;y\)Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=4\\y=\dfrac{16}{3}\end{matrix}\right.\)
Tìm Min
A= 5n2+9y2-12xy+24x-48y+82
Tìm min của biểu thức :
S = \(5x^2+9y^2-12xy+24x-48y+2080\)
3y=z
\(S=5x^2+z^2-4xz-24x+16z+2080\)
\(S=\left(x-2z+8\right)^2+4x^2-40x+2080-8^2\)
\(S=\left(x-2z+8\right)^2+4\left(x-5\right)^2+2080-8^2-4.5^2\)
Smin =\(2080-8^2-4.5^2\)
đề thi học kỳ của mình cũng có câu này
tim min P=\(5x^2+9y^2-12xy+24x-48y+82\)
\(4x^2+9y^2+64-12xy-48y+32x+x^2-8x+16+2\)
\(=\left(2x-3y+8\right)^2+\left(x-4\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\)x=4 và y=\(\frac{16}{3}\)
Vậy MINP=2 <=> x=4;y=16/3
a. Tìm a để đa thức A(x) = 3x3 - 5x2 + x + 2a chia hết cho đa thức B(x) = x + 2
b.tìm giá trị nhỏ nhất của đa thức sau A = 3x2 + 14y2 - 12xy + 6x - 8y + 10