Những câu hỏi liên quan
HT
Xem chi tiết
Xem chi tiết
H24
24 tháng 9 2019 lúc 13:11

a) Đặt \(x-1=a\)

\(pt\Leftrightarrow\frac{13}{a}+\frac{5}{2a}=\frac{6}{3a}\)

\(\Leftrightarrow\frac{31}{2a}=\frac{6}{3a}\)

\(\Leftrightarrow\frac{31}{2}=2\)(vô lí)

Vậy pt vô nghiệm

Bình luận (0)
H24
24 tháng 9 2019 lúc 13:27

a) \(\frac{13}{x-1}+\frac{5}{2x-2}=\frac{6}{3x-3}\)

\(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}=\frac{6}{3\left(x-1\right)}\)

\(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}=\frac{2}{x-1}\)

\(\frac{31}{2\left(x-1\right)}=\frac{2}{x-1}\)

\(\frac{31}{2}=2\)

=> không có x thỏa mãn đề bài.

b) \(\frac{1}{x-1}+\frac{-2}{3}\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x}\)

\(\frac{1}{x-1}+\frac{-2}{3}.\frac{-9}{20}=\frac{5}{2\left(1-x\right)}\)

\(\frac{1}{x-1}-\frac{-18}{60}=\frac{5}{2\left(1-x\right)}\)

\(\frac{1}{x-1}+\frac{3}{10}=\frac{5}{2\left(1-x\right)}\)

\(10\left(1-x\right)+3\left(x-1\right)\left(1-x\right)=25\left(x-1\right)\)

\(7-4x-3x^2=25x-25\)

\(7-4x-3x^2-25x+25=0\)

\(32-29x-3x^2=0\)

\(3x^2+29x-30=0\)

\(3x^2+32x-3x-32=0\)

\(x\left(3x+32\right)-\left(3x+32\right)=0\)

\(\left(3x+32\right)\left(x-1\right)=0\)

\(\orbr{\begin{cases}3x+32=0\\x-1=0\end{cases}}\)

\(\orbr{\begin{cases}x=-\frac{32}{3}\\x=1\end{cases}}\)

Bình luận (0)
H24

lên mạng chứ 0 tự làm ak

Bình luận (0)
LH
Xem chi tiết
NT
16 tháng 3 2023 lúc 22:10

a:=>x^2-1-x=2x-1

=>x^2-x-1=2x-1

=>x^2-3x=0

=>x=0(loại) hoặc x=3(nhận)

b:=>x+2=0 hoặc 5-3x=0

=>x=-2 hoặc x=5/3

c:=>20(1-2x)+6x=9(x-5)-24

=>20-40x+6x=9x-45-24

=>-34x+20=9x-69

=>-43x=-89

=>x=89/43

d: =>x^2+4x+4-x^2-2x+3=2x^2+8x-4x-16-3

=>2x^2+4x-19=-2x+7

=>2x^2+6x-26=0

=>x^2+3x-13=0

=>\(x=\dfrac{-3\pm\sqrt{61}}{2}\)

e: =>(2x-3)(2x-3-x-1)=0

=>(2x-3)(x-4)=0

=>x=4 hoặc x=3/2

Bình luận (0)
NL
Xem chi tiết
H24
27 tháng 2 2019 lúc 20:43

sorry em mới lớp 7

Bình luận (0)
NL
15 tháng 4 2019 lúc 10:46

lớp 7 kệ e chị có bắt e tl đâu

Bình luận (0)
H24
Xem chi tiết
AH
20 tháng 4 2021 lúc 2:10

d,

\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)

e,

\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)

\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)

\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)

Vậy không tồn tại $x$ thỏa mãn đề bài.

f, 

\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)

\(\Leftrightarrow 6x-3=10+6x\)

\(\Leftrightarrow 13=0\) (vô lý)

Vậy không tồn tại $x$ thỏa mãn đề bài.

Bình luận (0)
AH
20 tháng 4 2021 lúc 2:15

a,

$0-|x+1|=5$

$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)

Do đó không tồn tại $x$ thỏa mãn điều kiện đề.

b,

\(2-|\frac{3}{4}-x|=\frac{7}{12}\)

\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)

\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)

c, 

\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)

\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)

\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)

\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
BL
Xem chi tiết
EC
16 tháng 8 2019 lúc 10:08

1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)

=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)

b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)

=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)

=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)

c) TT

Bình luận (0)
HS
16 tháng 8 2019 lúc 10:20

a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)

\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)

=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)

=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)

=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)

=> \(\left|50x-140\right|=\left|25x+24\right|\)

=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)

c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)

=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)

Bài 2 : a. |2x - 5| = x + 1

 TH1 : 2x - 5 = x + 1

    => 2x - 5 - x = 1

    => 2x - x - 5 = 1

    => 2x - x = 6

    => x = 6

TH2 : -2x + 5 = x + 1

   => -2x + 5 - x = 1

   => -2x - x + 5 = 1

   => -3x = -4

   => x = 4/3

Ba bài còn lại tương tự

Bình luận (0)
DV
16 tháng 8 2019 lúc 10:24

cho mình

Bình luận (0)
TL
Xem chi tiết
LT
Xem chi tiết
PL
1 tháng 6 2019 lúc 13:04

\(1,\)\(\frac{x+2}{x+3}+\frac{x-1}{x+1}=\frac{2}{x^2+4x+3}+1\)

\(\Rightarrow\frac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+3\right)}+\frac{\left(x-1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}=\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{\left(x+1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}\)

\(\Rightarrow\)\(x^2+3x+2+x^2-2x-3=2+x^2+4x+3\)

\(\Rightarrow x^2-3x-6=0\)

.....

Bình luận (0)
PL
1 tháng 6 2019 lúc 13:20

\(\frac{x+1}{x-2}+\frac{2x-1}{x-1}=\frac{2}{x^2-3x+2}+\frac{11}{2}\)

\(\Rightarrow\frac{2\left(x+1\right)\left(x-1\right)}{2\left(x-2\right)\left(x-1\right)}+\frac{2\left(2x-1\right)\left(x-2\right)}{2\left(x-1\right)\left(x-2\right)}\)\(=\frac{4}{2\left(x-1\right)\left(x-2\right)}+\frac{22\left(x-1\right)\left(x-2\right)}{2\left(x-1\right)\left(x-2\right)}\)

\(\Rightarrow2x^2-2+4x^2-10x+4=4+22x^2-66x+44\)

.....

Bình luận (0)
PL
1 tháng 6 2019 lúc 13:26

\(3,\)\(-2x^2+4x+3\)

\(=-2\left(x^2-2x-\frac{3}{2}\right)\)

\(=-2\left[\left(x^2-2x+1\right)-\frac{5}{2}\right]\)

\(=-2\left(x-1\right)^2+5\)

Đa thức này lớn nhất =5 khi và chỉ khi \(\left(x-1\right)^2\)nhỏ nhất 

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

Bình luận (0)
TT
Xem chi tiết
H24
22 tháng 4 2020 lúc 19:36

a) \(\frac{5x-2}{2-2x}+\frac{2x-1}{2}+\frac{x^2+x-3}{1-x}=1\)

ĐK: x≠1

<=>\(\frac{5x-2}{2\left(1-x\right)}+\frac{2x-1}{2}\frac{x^2+x-3}{1-x}=1\)

<=>\(\frac{5x-2+\left(1-x\right).\left(2x-1\right)+2\left(x^2+x-3\right)}{2\left(1-x\right)}=1\)

<=>\(\frac{5x-2+2x-1-2x^2+x+2x^2+2x-6}{2\left(1-x\right)}=1\)

<=>\(\frac{10x-9}{2\left(1-x\right)}=1\)

<=> 10x-9=2(1-x)

<=>10x-9=2-2x

<=> 10x+2x= 2+9

<=> 12x=11

<=> x= \(\frac{11}{12}\left(tm\right)\)

b) \(\frac{6x-1}{2-x}+\frac{9x+4}{x+2}=\frac{3x^2-2x+1}{x^2-4}\)

ĐK: x≠2, x≠-2

<=>\(\frac{6x-1}{-\left(x-2\right)}+\frac{9x+4}{x+2}-\frac{3x^2-2x+1}{\left(x-2\right)\left(x+2\right)}=0\)

<=> -(x+2).(6x-1)+(x-2).(9x+4)-(3x2-2x+1)=0

<=> -(6x2-x+12x-2)+9x2+4x-18x-8-3x2+2x-1 = 0

<=> -6x2-11x+2+9x2+4x-18x-8-3x2+2x-1=0

<=> -23x-7=0

<=> -23x=7

<=> x= \(\frac{-7}{23}\left(tm\right)\)

Bình luận (0)
H24
22 tháng 4 2020 lúc 20:22

tham khảo câu d trong

https://hoc24.vn/hoi-dap/question/919967.html

Bình luận (0)
H24
22 tháng 4 2020 lúc 20:32

c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)

\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

⇒x2+x+1+2x2-5=4x-4

⇔3x2-3x=0

⇔3x(x-1)=0

⇔x=0 (TMĐK) hoặc x=1 (loại)

Vậy tập nghiệm của phương trình đã cho là:S={0}

Bình luận (0)