tìm n thuộc N để các số sau là số chính phương
a, (23-n)(n-3)
b, 2^n + 15
Tìm số tự nhiên n để các số sau là số chính phương
a) (23-n).(n-3)
b) \(2^n +15 \)
c) 2^8 + 2^11 + 2^n
tìm n thuộc n để các số sau là số chính phương n^4-n^3-2n+2
tìm n thuộc Z để các số sau là số chính phương n^4+n^3+n^2
Ta có: \(n^4+n^3+n^2=n^2\left(n^2+n+1\right)\)
Theo đề ra thì \(n^2\left(n^2+n+1\right)\) mà \(n^2\)là một số chính phương \(\Rightarrow n^2+n+1\)là 1 số chính phương.
Gọi \(n^2+n+1=k^2\) =>\(4n^2+4n+1+3\)= \(4k^2\)
=> \(\left(2n+1\right)^2+3=4k^2\) => \(\left(2k-2n-1\right)\left(2k+2n+1\right)=3\)
\(\Leftrightarrow2k-2n-1;2k+2n+1\inƯ\left(3\right)=\left\{3;1;-3;-1\right\}\)Và \(2k-2n-1;2k+2n+1\)phải đồng âm hoặc đồng dương,
Ta có bảng sau:
\(2k-2n-1\) | 1 | 3 | -1 | -3 |
\(2k+2n+1\) | 3 | 1 | -3 | -1 |
\(2k-2n\) | 2 | 4 | 0 | -2 |
\(2k+2n\) | 2 | 0 | -4 | -2 |
\(n\) | 0 | -1 | -1 | 0 |
Vậy n thỏa mãn đề bài là n=0 hoặc n=-1
Bài 3: Tìm số nguyên n để C=4n^2+n+4 là số chính phương.
Bài 4: Tìm số nguyên n để A=n^2+6n+2 là số chính phương.
Bài 5: Tìm số nguyên n để B=n^2+n+23 là số chính phương.
Bài 6: Tìm số tự nhiên n để M=1!+2!+3!+....+n! là số chính phương.
Bài 7: Tìm số nguyên n để N=n^2022+1 là số chính phương.
Tìm n thuộc N để các số sau là số chính phương
n4+n3+n2
Đặt \(n^4+n^3+n^2=a^2\left(a\in N\right)\)
Ta có : \(n^4-2n^3+n^2< a^2< n^4+2n^3+n^2\)
\(\Leftrightarrow\left(n^2-n\right)^2< a^2< \left(n^2+n\right)^2\)\(\Rightarrow n^2-n< a< n^2+n\)
Mặt khác, ta lại có : \(n^2-n< n^2< n^2+n\) \(\Rightarrow a=n^2\Leftrightarrow a^2=n^4\)
\(\Leftrightarrow n^4+n^3+n^2=n^4\Leftrightarrow n^2\left(n+1\right)=0\Leftrightarrow\orbr{\begin{cases}n=0\left(\text{nhận}\right)\\n=-1\left(\text{loại}\right)\end{cases}}\)
Vậy n = 0 thoả mãn đề bài.
2.Tìm n thuộc N. Để các phân số sau có giá trị là số tự nhiên.
a,15/n b,7/n-2 c,n+8/n+3 d,4n-5/2n-1
tìm n thuộc N để các biểu thức sau là số chính phương
a) n^2 + 2n + 12
b) n.(n+3)
c) 13.n +3
d) n^2 + n + 1589
Biết n thuộc { 3; 4 }. Tìm n để các biểu thức sau là số nguyên tố:
a) ( n - 2 )( n2 + 8 )
b) ( n + 3 )( n2 - 15 )
Biết n thuộc { 3; 4 }. Tìm n để các biểu thức sau là số nguyên tố:
a) ( n - 2 )( n2 + 8 )
b) ( n + 3 )( n2 - 15 )