so sánh b=1/2022+2/2021+3/2020+...+2021/2+2022/1 VÀ c=1/2+1/3+1/4+...+1/2022+1/2023
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022
B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\)
B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\)
B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))
Vậy B > C
So sánh 2 phân số
A = \(\dfrac{2022^{2022}+1}{2022^{2021}+1}\) ; B = \(\dfrac{2022^{2023}+1}{2021^{2022}+1}\)
2. Cho:
B= 1 - 1/2 + 1/3 - 1/4 +...+ 1/2021 - 1/2022 + 1/2023 C= 1/1012 + 1/1013 + 1/1014 +...+ 1/2021 + 1/2022 + 1/2023
Tính: B-C
Tìm x, biết:
( \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) + ... + \(\dfrac{1}{2023}\) ) . x = \(\dfrac{2022}{1}\) + \(\dfrac{2021}{2}\) + \(\dfrac{2020}{3}\)
+ ... + \(\dfrac{1}{2022}\)
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = (\(\dfrac{2021}{2}+1\))+(\(\dfrac{2020}{3}+1\))+....+(\(\dfrac{1}{2022}+1\))
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = \(\dfrac{2023}{2}\)+\(\dfrac{2023}{3}\)+....+ \(\dfrac{2023}{2022}\)
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = 2023.( \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\))
vậy x= 2023
Gía trị lớn nhất của phân thức 2022/x^2+ 4x+2026 là:
A. 1 B. 2 C. 2021/2022 D. 2021/2023
\(\dfrac{2022}{x^2+4x+2026}=\dfrac{2022}{\left(x+2\right)^2+2022}\)
Ta có \(\left(x+2\right)^2+2022\ge2022\Leftrightarrow\dfrac{2022}{\left(x+2\right)^2+2022}\ge\dfrac{2022}{2022}=1\)
Dấu \("="\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}}{\dfrac{2022}{1}+\dfrac{2021}{2}+\dfrac{2020}{3}+...+\dfrac{1}{2022}}\)
Tính nhanh:
2022 x 2023 - 1/2023 x 2021 + 2022
\(\dfrac{2022\times2023-1}{2023\times2021+2022}\)
= \(\dfrac{\left(2021+1\right)\times2023-1}{2023\times2021+2022}\)
= \(\dfrac{2023\times2021+2023-1}{2023\times2021+2022}\)
= \(\dfrac{2023\times2021+2022}{2023\times2021+2022}\)
= 1
x+1/2021*2022+1/2021*2022+......+1/3*2+1/3*2=1
tìm x 2-x/2021 -1 = 1-x/2022 - x/2023
=>\(\left(\dfrac{2-x}{2021}-1\right)=\left(\dfrac{1-x}{2022}-1\right)+\left(1-\dfrac{x}{2023}\right)\)
=>2023-x=0
=>x=2023
so sánh 2022 mũ 2023 +1 phần 2022 mũ 2021 +1 Với 2022 mũ 2021 +1 phần 2022 mũ 2019 +1.help me, giúp với ,khó quá ko làm đc