Tìm x,y nguyên biết:
\(x^2y+2xy-27x+y=0\)
Bài 1:Tìm các cặp số (x, y) nguyên biết :
a,(3-x).(4y+1)=20 b,x(y + 2) + 2y =6 c,6xy + 4x - 3y = 8
d,2xy - x + 2y - 13 = 0 e,2xy - 6X + 3 + y - 13 = 0
giúp mình với
mình cảm ơn
a, (3 - \(x\))(4y + 1) = 20
Ư(20) = { -20; -10; -5; -4; -2; -1; 1; 2; 4; 5; 10; 20}
Lập bảng ta có:
\(3-x\) | -20 | -10 | -5 | -4 | -2 | -1 | 1 | 2 | 4 | 5 | 10 | 20 |
\(x\) | 23 | 13 | 8 | 7 | 5 | 4 | 2 | 1 | -1 | -2 | -7 | -17 |
4\(y\) + 1 | -1 | -2 | -4 | -5 | -10 | -20 | 20 | 10 | 5 | 4 | 2 | 1 |
\(y\) | -1/2 | -3/4 | -5/4 | -6/4 | -11/4 | -21/4 | 19/4 | 9/4 | 1 | 3/4 | 1/4 | 0 |
Vậy các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) =(-1; 1); (-17; 0)
b, \(x\left(y+2\right)\)+ 2\(y\) = 6
\(x\) = \(\dfrac{6-2y}{y+2}\)
\(x\in\) Z ⇔ 6 - \(2y⋮\) \(y\) + 2 ⇒-(2y + 4) +10 ⋮ \(y\) + 2 ⇒ -2(\(y\)+2) +10 ⋮ \(y\)+2
⇒ 10 ⋮ \(y\) + 2
Ư(10) = { -10; -5; -2; -1; 1; 2; 5; 10}
Lập bảng ta có:
\(y+2\) | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
\(y\) | -12 | -7 | -4 | -3 | -1 | 0 | 3 | 8 |
\(x=\) \(\dfrac{6-2y}{y+2}\) | -3 | -4 | -7 | -12 | 8 | 3 | 0 | -1 |
Theo bảng trên ta có các cặp \(x;y\)
nguyên thỏa mãn đề bài lần lượt là:
(\(x;y\) ) =(-3; -12); (-4; -7); (-12; -3); (8; -1); (3; 0); (0;3 (-1; 8)
Tìm x, y nguyên dương biết: \(x^2+2y^2+2xy-4x-3y-2=0\)
Bạn tham khảo:
Tìm nghiệm nguyên dương của phương trình x2+2y2+2xy-4x-3y-2=0 - Hoc24
Bài 1:Tìm các cặp số (x, y) nguyên biết :
a,6xy + 4x - 3y = 8 b,2xy - x + 2y - 13 = 0 c,2xy - 6X + 3 + y - 13 = 0
giúp mình với
mình cảm ơn
6xy+4x-3y=8
=> 6xy -3y=8-4x
=>3y(2x-1)= -2(2x-1) +6
=>(2x-1)(3y+2)=6
mà x,y thuộc Z =>(2x-1),(3y+2) thuộc Z =>(2x-1),(3y+2) thuộc U(6) xong giải ra bình thường nhé mấy câu sau tương tự
chị giải nốt cho em phần a với ạ
tìm các số nguyên x,y biết
a)xy-x-2x-1=0
b)x^2-2xy+x-2y+2=0
a, xy-x-2x-1=0
x(y-1-2)-1=0
x(y-3)-1=0
+x=0
+(y-3)-1=0
y-3=1
y=4
Vậy : x=0 và y=4
b, x^2-2xy+x-2y+2=0
Tìm x,y biết:
a,2x^2+y^2+2xy+10x+25=0
b,x^2+3y^2+2xy-2y+1=0
c,x^2+2y^2+2xy-2x+2=0
a) \(2x^2+y^2+2xy+10x+25=0\)
\(\Leftrightarrow x^2+x^2+y^2+2xy+10x+25=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+10x+25\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+5\right)^2=0\)
Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x\\\left(x+5\right)^2\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x+y\right)^2+\left(x+5\right)^2\ge0\forall x\)
Vậy đẳng thức xảy ra\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=5\end{cases}}\)
b)\(x^2+3y^2+2xy-2y+1=0\)
\(\Leftrightarrow x^2+y^2+2y^2+2xy-2y+\frac{1}{2}+\frac{1}{2}=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(2y^2-2y+\frac{1}{2}\right)+\frac{1}{2}=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)
Vì \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2\ge0\)
nên \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)
Mà\(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)
nên pt vô nghiệm
a) 2x2 + y2 + 2xy + 10x + 25 = 0
=> (x2 + 2xy + y2) + (x2 + 10x + 25) = 0
=> (x + y)2 + (x + 5)2 = 0
<=> \(\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\) <=> \(\hept{\begin{cases}y=-x\\x=-5\end{cases}}\) <=> \(\hept{\begin{cases}y=5\\x=-5\end{cases}}\)
b)c) xem lại đề
Tìm các số nguyên \(x,y\) thỏa mãn: \(x^2+2xy+7\left(x+y\right)+2y^2+10=0\)
\(x^2+2xy+7.\left(x+y\right)+2y^2+10=0\)
\(\Leftrightarrow\left(x+y^2\right)+7.\left(x+y\right)+\dfrac{49}{4}+y^2-\dfrac{9}{4}=0\)
\(\Leftrightarrow\left(x+y+\dfrac{7}{2}^2\right)=\dfrac{9}{4}-y^2\)
\(Do\left(x+y+\dfrac{7}{2}^2\right)\ge0\Rightarrow\dfrac{9}{4}-y^2\ge0\Rightarrow y^2\le\dfrac{9}{4}\)
Mà y nguyên \(\Rightarrow\left\{{}\begin{matrix}y^2\\\\y^2=1\end{matrix}\right.=0\)
Thay vào phương trình đầu:
Với \(y=0\Rightarrow x^2+7x+10=0\Rightarrow\left\{{}\begin{matrix}x=-2\\\\\\x=-5\end{matrix}\right.\)
Với \(y=1\Rightarrow x^2+9x+19=0\Rightarrow\) không có x nguyên
Với \(y=-1\Rightarrow x^2+5x+5=0\Rightarrow\) không có x nguyên
tìm x, y biết :
a, x^2 - 4x + y^2 +2y +5 = 0
b, x^2 + 2y^2 + 2xy -2y +1 =0
c, x^2 + 2y^2 +2xy = 2y - 2
GIÚP MÌNH NHA
a/ (x^2-4x+4)+(y^2+2y+1)=0
<=> (x-2x)^2+(y+1)^2 = 0 Vậy x=2 và y = -1
b/ (x^2+2xy+y^2) + ( y^2-2y+1) = 0
<=> (x+y)^2 + (y-1)^2 = 0 Vậy x=y=1
a) { x^2 - 4x +4 } +{y^2+2x+1}=0
<=>{ x - 2x}^2+{y+1}^2=0 Vậy x =2 vầy =-1
b) { x^2 +2xy +y^2} +{y^2 - 2y +1=0}
<=> {x+y}^2+{ y - 1 }^2 =0 Vậy x=y=1.
NHA BẠN!
Tìm x,v nguyên:
a,x2 + y2 -2xy -2x -2y +1=0
b, x2 + y2 + 2xy - 2x- 2y -8=0
Tìm x, y nguyên:
x^2 -2x -11 =y^2
x^2 + 2xy + 7(x+y) + 2y^2 +10=0
x2 - 2x - 11 = y2
<=> (x2 - 2x + 1) - y2 = 12
<=> (x - 1)2 - y2 = 12
<=> (x + y - 1)(x - y - 1) = 12
Lập bảng xét các trường hợp
x - y - 1 | 1 | 12 | -1 | -12 | 2 | 6 | -2 | -6 | 3 | 4 | -3 | -4 |
x + y - 1 | 12 | 1 | -12 | -1 | 6 | 2 | -6 | -2 | 4 | 3 | -4 | -3 |
x | 7,5(loại) | 7,5(loại) | -5,5(loại) | -5,5(loại) | 5 | 5 | -3 | -3 | 4,5(loại) | 4,5(loại) | -2,5(loại) | -2,5 (loại) |
y | | | | | | | | | 2 | -2 | -2 | 2 | | | | | | | | |
Vậy các cặp (x;y) thỏa là (5;2) ; (5 ; -2) ; (-3; -2) ; (-3 ; 2)
\(2xy+x+2y+4=2\)
=> \(x\left(2y+1\right)+\left(2y+1\right)=-1\)
=> \(\left(x+1\right)\left(2y+1\right)=-1\)
Ta có bảng:
x+1 | 1 | -1 |
2y+1 | -1 | 1 |
x | 0 | -2 |
2y | -2 | 0 |
y | -1 | 0 |
Vậy các cặp số (x;y) tmđb là (0;-1);(-2;0)
Mình nghĩ là đề : xy sẽ hay hơn
\(xy+x+2y+4=2\)
\(\Leftrightarrow xy+x+2y+4-2=0\)
\(\Leftrightarrow xy+x+2y+2=0\)
\(\Leftrightarrow x\left(y+1\right)+2\left(y+1\right)=0\)
\(\Leftrightarrow\left(y+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)