cho a +b =1 CmR a /(b^3-1)+b/(a^3-1) = 2(ab-2)/(a^2*b^2+3)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài5: cho a,b,c>0.CMR
1, 2/a+1/b >= 4/a+b
2, 1/a+1/b+1/c>= a/a+b+c
Bài 6: cho a,b>=0 cmr
1, a^3+b^4>=ab(a+b)
2, a^4+b^4>=ab(a^2+b^2)
3, a5+b5>=ab(a^3+b^3)
Bài 7 cho a,b,c>0 cmr
1/a^3+b^3+abc +1/b^3+c^3+abc+1/c^3+a^3+2 <1/abc
Bài 8cho a,b,c>0;abc=1
1, 1/a^3+b^3+2 +1/b^3+c^3+2 +1/c^3+a^3+2 =< 1
2,ab/a^5+b^5+ab +bc/b^5+c^5+bc + ca/c^5+a^5+ca =<1
cho a b =1 CmR a /(b^3-1) b/(a^3-1) = 2(ab-2)/(a^2*b^2 3) THÁCH ANH EM
Cho x>y TM: x+y<=1 CMR: 1/x^2+y^2 = 1/xy>=6
Cho a,b,c >0 TM: a+b+c<=1 CMR: (1/a^2+bc) + (1/b^2+ac)+ 1/c^2+2ab >=9
Cho a,b>0 TM: a+b<=1 ;CMR: (1/a^b^2)+4b+1/ab>=7
Cho a,b>0 TM:a+b<=1. CMR: 1/1+a^2+b^2 +1/2ab >=8/3
Cho a,b,c>0 TM: a+b+c<=3.CMR: 1/a^2+b^2+c^2 +2009/ab+bc+ac >=670
Cho x>y TM: x+y<=1 CMR: 1/x^2+y^2 = 1/xy>=6
Cho a,b,c >0 TM: a+b+c<=1 CMR: (1/a^2+bc) + (1/b^2+ac)+ 1/c^2+2ab >=9
Cho a,b>0 TM: a+b<=1 ;CMR: (1/a^b^2)+4b+1/ab>=7
Cho a,b>0 TM:a+b<=1. CMR: 1/1+a^2+b^2 +1/2ab >=8/3
Cho a,b,c>0 TM: a+b+c<=3.CMR: 1/a^2+b^2+c^2 +2009/ab+bc+ac >=670
Cho x>y TM: x+y<=1 CMR: 1/x^2+y^2 = 1/xy>=6
Cho a,b,c >0 TM: a+b+c<=1 CMR: (1/a^2+bc) + (1/b^2+ac)+ 1/c^2+2ab >=9
Cho a,b>0 TM: a+b<=1 ;CMR: (1/a^b^2)+4b+1/ab>=7
Cho a,b>0 TM:a+b<=1. CMR: 1/1+a^2+b^2 +1/2ab >=8/3
Cho a,b,c>0 TM: a+b+c<=3.CMR: 1/a^2+b^2+c^2 +2009/ab+bc+ac >=670
Cho x>y TM: x+y<=1 CMR: 1/x^2+y^2 + 1/xy>=6
Cho a,b,c >0 TM: a+b+c<=1 CMR: (1/a^2+bc) + (1/b^2+ac)+ 1/c^2+2ab >=9
Cho a,b>0 TM: a+b<=1 ;CMR: (1/a^b^2)+ 4b + 1/ab>=7
Cho a,b>0 TM:a+b<=1. CMR: 1/1+a^2+b^2 + 1/2ab >=8/3
Cho a,b,c>0 TM: a+b+c<=3.CMR: 1/a^2+b^2+c^2 + 2009/ab+bc+ac >=670
a)Cho 3 số dương 0 ≤ a ≤ b ≤ c ≤ 1. CMR : (a/bc+1)+(b/ac+1)+(c/ab+1) ≤ 2
b)Cho a,b,c la 3 canh của 1 Δ. CMR :2(ab+bc+ca) > a2+b2+c2.1. Cho a,b >0, ab=1. CMR: 1/(1+a)^2 +1/(1+b)^2 >=1/2
2. Cho a,b >0, ab=1. Tìm GTLN của P=a/ căn (a^4+3) +b/căn (b^4+3)
1.
\(\left(1+a\right)^2=\left(1.1+\sqrt{\frac{a}{b}}.\sqrt{ab}\right)^2\le\left(1+\frac{a}{b}\right)\left(1+ab\right)=\frac{\left(a+b\right)\left(1+ab\right)}{b}\)
\(\Rightarrow\frac{1}{\left(1+a\right)^2}\ge\frac{b}{\left(a+b\right)\left(1+ab\right)}\)
\(\left(1+b\right)^2\le\frac{\left(a+b\right)\left(1+ab\right)}{a}\Rightarrow\frac{1}{\left(1+b\right)^2}\ge\frac{a}{\left(a+b\right)\left(1+ab\right)}\)
\(\Rightarrow\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}\ge\frac{a}{\left(a+b\right)\left(1+ab\right)}+\frac{b}{\left(a+b\right)\left(1+ab\right)}=\frac{1}{1+ab}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=1\)
2.
\(P=\sqrt{\frac{a^2}{a^4+3}}+\sqrt{\frac{b^2}{b^4+3}}\le\sqrt{2\left(\frac{a^2}{a^4+3}+\frac{b^2}{b^4+3}\right)}\)
Đặt \(\left(a^2;b^2\right)=\left(x;y\right)\Rightarrow xy=1\)
\(Q=\frac{x}{x^2+3}+\frac{y}{y^2+3}=\frac{x}{x^2+3}+\frac{x}{3x^2+1}-\frac{1}{2}+\frac{1}{2}\)
\(Q=\frac{-\left(x-1\right)^2\left(3x^2-2x+3\right)}{2\left(x^2+3\right)\left(3x^2+1\right)}+\frac{1}{2}\le\frac{1}{2}\)
\(\Rightarrow P\le\sqrt{2Q}\le1\)
\(P_{max}=1\) khi \(a=b=1\)
cho 2 số a,b thỏa mãn a-b=1.cmr a^3-b^3-ab>=1/2
a^3-b^3-ab>=1/2
(a-b)(a^2+b^2+ab)-ab>=1/2
a^2+b^2>=1/2 (vì a-b=1)
(a-b)^2+2ab-1/2>=0
1/2+2ab>=0 (vì a-b=1)
1+4ab>=0
(a-b)^2+4ab>=0
(a+b)^2>=0 (luôn đúng)