Những câu hỏi liên quan
TH
Xem chi tiết
H24
Xem chi tiết
TD
4 tháng 7 2017 lúc 18:15

2.

a) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\)

\(\Rightarrow x=6;y=8;z=10\)

b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{18}=\frac{y}{24}\)( 1 )

\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{24}=\frac{z}{32}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{18}=\frac{y}{24}=\frac{z}{32}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}=\frac{3x-2y-z}{54-48-32}=\frac{13}{-26}=\frac{-1}{2}\)

\(\Rightarrow x=-9;y=-12;z=-16\)

3.

a) \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)

\(\Rightarrow x=12;y=28;z=8\)

b) x : y : z = 2 : 5 : 7

\(\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)'

\(\Rightarrow x=6;y=15;z=21\)

Bình luận (0)
H24
4 tháng 7 2017 lúc 18:45

2) a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{5z}{25}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\) (theo t/c dãy tỉ số bằng nhau)

=> x = 2.3 = 6 ; y = 2.4 = 8; z = 2.5 = 10

b, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)

\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{12}=\frac{z}{16}\)

\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\Rightarrow\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\) (theo t/c của dãy tỉ số bằng nhau)

=> x=(-1).9=-9 ; y=(-1).12=-12 ; z=(-1).16=-16

c, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)

Ta có: xy+yz+zx=104

=> (2k)(3k) + (3k)(4k) + (4k)(2k) = 104

=> 6k2 + 12k2 + 8k2 = 104

=> k2(6+12+8) = 104

=> 26k2  = 104

=> k2 = 4

=> k = ±2

Với k = 2 thì \(\hept{\begin{cases}x=2.2=4\\y=2.3=6\\z=2.4=8\end{cases}}\)

Với k = -2 thì \(\hept{\begin{cases}x=2.\left(-2\right)=-4\\y=\left(-2\right).3=-6\\z=\left(-2\right).4=-8\end{cases}}\)

3) a, Đặt k=x/3=y/7=z/2

\(k=\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\Rightarrow k^2=\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{4}=\frac{2x^2}{18}=\frac{y^2}{49}=\frac{3z^2}{12}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)

=> k2 = 4 => k = ±2

Với k = 2 thì \(\hept{\begin{cases}\frac{x}{2}=2\Rightarrow x=4\\\frac{y}{3}=2\Rightarrow y=6\\\frac{z}{4}=2\Rightarrow z=8\end{cases}}\)

Với k = -2 thì \(\hept{\begin{cases}\frac{x}{2}=-2\Rightarrow x=-4\\\frac{y}{3}=-2\Rightarrow y=-6\\\frac{z}{4}=-2\Rightarrow z=-8\end{cases}}\)

b, \(x:y:z=2:5:7\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)

=> x = 2.3 = 6 ; y = 5.3 = 15 ; z = 7.3 = 21

Bình luận (0)
H24
4 tháng 7 2017 lúc 18:54

Sửa lại bài 3a

Với k = 2 thì \(\hept{\begin{cases}x=2.3=6\\y=2.7=14\\z=2.2=4\end{cases}}\)

Với k=-2 thì \(\hept{\begin{cases}x=\left(-2\right).3=-6\\y=\left(-2\right).7=-14\\z=\left(-2\right).2=-4\end{cases}}\)

Bình luận (0)
TH
Xem chi tiết
VQ
5 tháng 11 2015 lúc 21:23

x:y:z=2:5:7

=>x/2=y/5=z/7

=>3x/6=2y/10=z/7

áp dụng tc dãy tỉ số = nhau ta có:

3x/6=2y/10=z/7=3x+2y-z/6+10-7=27/9=3

=>x/2=3=>x=6

=>y/5=3=>y=15

=>z/7=3=>z=21

Bình luận (0)
NN
Xem chi tiết
HQ
20 tháng 12 2018 lúc 11:51

a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)

\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)\(x-y-z=-27\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)

Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)

          \(\frac{y}{14}=9\Rightarrow y=9.14=126\)

         \(\frac{z}{10}=9\Rightarrow z=9.10=90\)

Vậy:\(x=189;y=126\)\(z=90\)

Bình luận (0)
HQ
20 tháng 12 2018 lúc 12:05

b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)\(x^2-2y^2+z^2=18\)

\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)\(x^2-2y^2+z^2=18\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)

\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)

\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)

Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)

Bình luận (0)
HQ
20 tháng 12 2018 lúc 12:36

c) \(x:y:z=3:8:5\)\(3x+y-2z=14\)

\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)\(3x+y-2z=14\)

\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)và \(3x+y-2z=14\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\)

Ta có: \(\frac{3x}{9}=2\Rightarrow3x=18\Rightarrow x=6\)

\(\frac{y}{8}=2\Rightarrow y=16\)

\(\frac{2z}{10}=2\Rightarrow2z=20\Rightarrow z=10\)

Vậy:\(x=6;y=16;z=10\)

Bình luận (0)
IB
Xem chi tiết
NH
13 tháng 7 2018 lúc 13:41

a) Đặt \(\frac{x}{5}=\frac{y}{7}=k\)

\(\Rightarrow\hept{\begin{cases}x=5k\\y=7k\end{cases}}\)

\(\Rightarrow xy=5k.7k\)

\(\Rightarrow140=35k^2\)

\(\Rightarrow k^2=4\)

\(\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)

Với k = 2 ta có :

+) \(\frac{x}{5}=2\Rightarrow x=10\)

+) \(\frac{y}{7}=2\Rightarrow y=14\)

Với k = -2 ta có :

+) \(\frac{x}{5}=-2\Rightarrow x=-10\)

+) \(\frac{y}{7}=-2\Rightarrow y=-14\)

Vậy  \(\left(x;y\right)=\left\{\left(10;14\right);\left(-10;-14\right)\right\}\)

b) Ta có :

\(x:y:z\)\(=\)\(2:5:7\)\(\Rightarrow\)\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\)\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)

+) \(\frac{x}{2}=3\Rightarrow x=6\)

+) \(\frac{y}{5}=3\Rightarrow y=15\)

+) \(\frac{z}{7}=3\Rightarrow z=21\)

Vậy x = 6, y = 15 và z = 21

_Chúc bạn học tốt_

Bình luận (0)
NH
13 tháng 7 2018 lúc 13:23

a, x.y/5.7=140/35

=140/35=4

x/5=4/7

x/7=5/4

x.7=5.4

x.7=20

x=20;7

x=20/7

b,chịu

tk thì tk ko tk cx đc

Bình luận (0)
HN
13 tháng 7 2018 lúc 13:36

a, \(\frac{x}{5}=\frac{y}{7}\left(x.y=140\right)\)

Đặt \(\frac{x}{5}=\frac{y}{7}=k\)

\(\Rightarrow7x=5y\)

\(\Rightarrow x.y=7k.5k=35k^2=140\)

\(\Rightarrow k^2=4\Rightarrow k=\pm2\)

\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x=2.7=14\\y=2.5=10\end{cases}}\\\hept{\begin{cases}x=\left(-2\right).7=-14\\y=\left(-2\right).5=-10\end{cases}}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x=2.7=14\\y=2.5=10\end{cases}}\\\hept{\begin{cases}x=\left(-2\right).7=-14\\y=\left(-2\right).5=-10\end{cases}}\end{cases}}\)

Vậy ....

b, \(x:y:z=2:5:7\left(3x+2y-z=27\right)\)

Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\)

\(\Leftrightarrow x=2k;y=5k=z=7k\)

\(\Leftrightarrow3x+2y-z=6k+10k-7k=27\)

\(\Leftrightarrow x=6;y=15;z=21\)

Vậy ...

Bình luận (0)
H24
Xem chi tiết
NH
Xem chi tiết
VY
31 tháng 7 2016 lúc 12:55

a) ta co: x\5=y\3=z\4 va x+2y-z=-121

      Dat: x\5=y\3=z\4=k.suy ra: x=5k;y=3k;z=4k

                                              =5k+2.(3k)-4k

                                              =5k+6k-4k

                                              =7k=-121

                                              =-121:7k=-121\7

suy ra:x\5=-121\7suy ra: -121\7.5=-605\7

          y\3=-121\7 suy ra:-121\7.3=-363\7

          z\4=-121\7 suy ra:-121\7.3=-484\7

Bình luận (0)
QF
Xem chi tiết
PN
Xem chi tiết
PN
5 tháng 11 2017 lúc 12:29

a)vì\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)=\(\dfrac{z}{5}\)=>\(\dfrac{2x}{6}\)=\(\dfrac{3y}{12}\)=\(\dfrac{5z}{25}\)và 2x+3y+5z=86

áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\dfrac{2x}{6}\)=\(\dfrac{3y}{12}\)=\(\dfrac{5z}{25}\)=\(\dfrac{2x+3y+5z}{6+12+25}\)\(\dfrac{86}{43}\)=2

\(\dfrac{2x}{6}\)=2=>2x=2.6=12=>x=12:2=6

\(\dfrac{3y}{12}\)=2=>3y=12.2=24=>y=24:3=8

\(\dfrac{5z}{25}\)=2=>5z=25.2=50=>z=50:5=10

vậy x=6,y=8,z=10

Bình luận (0)
PN
5 tháng 11 2017 lúc 12:40

\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)=>\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)(1)

\(\dfrac{y}{6}\)=\(\dfrac{z}{8}\)=>\(\dfrac{y}{12}\)=\(\dfrac{z}{16}\)(2)

từ (1)(2)=>\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)=\(\dfrac{z}{16}\)=>\(\dfrac{3x}{27}\)=\(\dfrac{2y}{24}\)=\(\dfrac{z}{16}\)và 3x-2y-z=13

áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\dfrac{3x}{27}\)=\(\dfrac{2y}{24}\)=\(\dfrac{z}{16}\)=\(\dfrac{3x-2y-z}{27-24-16}\)=\(\dfrac{13}{-13}\)=-1

\(\dfrac{3x}{27}\)=-1=>3x=-1.27=-27=>x=-27x;3=-9

\(\dfrac{2y}{24}\)=-1=>2y=-1.24=-24=>y=-24:2=-12

\(\dfrac{z}{16}\)=-1=>z=-1.16=-16

vậy...

Bình luận (0)
TH
5 tháng 11 2017 lúc 12:52

\(a,\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\Leftrightarrow\dfrac{2x}{6}=\dfrac{3y}{12}=\dfrac{5z}{25}\)\(2x+3y+5z=86\)

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{2x}{6}=\dfrac{3y}{12}=\dfrac{5z}{25}=\dfrac{2x+3y+5z}{6+12+25}=\dfrac{86}{43}=2\)

+) \(\dfrac{2x}{6}=2\Rightarrow2x=2\cdot6=12\Rightarrow x=12:2=6\)

+) \(\dfrac{3y}{12}=2\Rightarrow3y=2\cdot12=24\Rightarrow y=24:3=8\)

+) \(\dfrac{5z}{25}=2\Rightarrow5z=2\cdot25=50\Rightarrow5z=50:5=10\)

Vậy ....

\(b,\dfrac{x}{3}=\dfrac{y}{4}\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{12}\left(1\right)\)

\(\dfrac{y}{6}=\dfrac{z}{8}\Leftrightarrow\dfrac{y}{12}=\dfrac{z}{16}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}\Leftrightarrow\dfrac{3x}{27}=\dfrac{2y}{24}=\dfrac{z}{16}\)\(3x-2y-z=13\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{3x}{27}=\dfrac{2y}{24}=\dfrac{z}{16}=\dfrac{3x-2y-z}{27-24-16}=\dfrac{13}{-13}=-1\)

+) \(\dfrac{3x}{27}=-1\Rightarrow3x=-27\Rightarrow x=-27:3=-9\)

+) \(\dfrac{2y}{24}=-1\Rightarrow2y=-24\Rightarrow y=-24:2=-12\)

+) \(\dfrac{z}{16}=-1\Rightarrow x=-16\)

Vậy .....

\(c,x:y:z=2:5:7\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}\Leftrightarrow\dfrac{3x}{6}=\dfrac{2y}{10}=\dfrac{z}{7}\)\(3x+2y-z=27\)

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{3x}{6}=\dfrac{2y}{10}=\dfrac{z}{7}=\dfrac{3x+2y-z}{6+10-7}=\dfrac{27}{9}=3\)

+) \(\dfrac{3x}{6}=3\Rightarrow3x=3\cdot6=18\Rightarrow x=18:3=6\)

+) \(\dfrac{2y}{10}=3\Rightarrow2y=3\cdot10=30\Rightarrow y=30:2=15\)

+) \(\dfrac{z}{7}=3\Rightarrow z=3\cdot7=21\)

Vậy ....

d, Xem lại nha!

Bình luận (2)